Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Сродство его величина

    Допустим, что в мембране одновременно происходят два необратимых и взаимосвязанных процесса, движущие силы которых и Х2. Величина Х1 соответствует движущей силе векторного процесса транспорта -го компонента газовой смеси, в качестве которой принимают отрицательную разность химических потенциалов на границе мембран ( 1 = —Ац,). Сопряженный процесс с движущей силой Ха может быть векторным, как например, перенос у-го компонента, или скалярным, как процессы сорбции и химические превращения. Феноменологическое описание этих процессов идентично, сорбцию можно рассматри-вать как отток массы диффундирующего компонента из аморфной фазы в кристаллическую, где миграция вещества незначительна. В качестве движущей силы скалярного процесса примем химическое сродство Х2=Аг. Заметим, что, согласно принципу Кюри — Пригожина, сопряжение скалярных и векторных процессов при линейных режимах возможно в анизотропных средах (например, в мембранах гетерофазной структуры) или даже в локально-изотропных, но имеющих неоднородное распределение реакционных параметров [1, 5]. [c.17]


    Химическое сродство важно в том отношении, что его знак и величина не только отвечают на вопрос, возможна ли химическая реакция в той или иной ситуации, но и указывают само направление процесса, если он возможен [3, 8]. [c.36]

    В приведенных выше уравнениях известны теплоты образования молекулярных частиц, и для каждого процесса могут быть получены относительные термодинамические энергии (Е ). Например, для уравнения с ННз определяется как теплота образования ОН3 минус теплота образования КНз. График зависимости Ет от энергий связи 15-электронов азота ( ь) демонстрирует исключительно хорошую корреляцию (рис. 16.16). Такой тип замещения эквивалентных оболочек дает хорошие корреляции и для данных по энергиям связи электронов в других элементах, например в углероде (Ь) и ксеноне ( /2) [55]. Этот вид корреляций полезен, поскольку дает возможность из некоторых измеренных энергий связи электронов оболочки и известных термодинамических параметров предсказать различные, еще не определенные термодинамические величины. Изучение приведенных выше уравнений показывает, что их можно использовать для определения сродства к протону. По некоторым непонятным причинам сродство к протону (РА) молекулы В берется как положительное число и приравнивается изменению энергии процесса (16.32) с отрицательным знаком. [c.351]

    Потенциал характеризует работу перемещения единицы массы компонента из объемной газовой фазы в поле действия сил материала мембраны градиент этой величины определяет движущую силу массопереноса. В пористых сорбционно-диффузионных мембранах заметное влияние оказывают адсорбционный и капиллярный потенциалы, в непористых — парциальный химический потенциал и химическое сродство. [c.14]

    Качественные представления о сродстве как свойстве реагировать в середине прошлого века стали принимать форму, допускающую количественный контроль. Бертло и Томсен предложили измерять сродство величиной теплового эффекта чем больше тепла выделяется при реакции, тем больше сродство между реагентами и тем прочнее образовавшееся соединеиие. Однако с точки зрения этого принципа объяснение эндотермических реакций было вообще немыслимо. Вместе с тем уравнение (11.19) показывает, что при некоторых условиях тепловой эффект, действительно, является мерой химического сродства. Например, при уменьшении температуры второе слагаемое правой части уравнения (11.19) уменьшается и при Т— -0 уравнение (П.19) переходит в [c.41]


    При дальнейшем анализе механохимических явлений будет рассматриваться преимущественно влияние механических воздействий на электрохимические реакции, поскольку тем самым решаются и другие задачи с одной стороны, обсуждаемые кинетические уравнения электрохимических реакций преобразуются для описания химических реакций (т. е. протекающих без переноса заряда) путем простой замены величины электрохимического сродства величиной химического сродства, а с другой стороны, например, химическая коррозия при высокотемпературном окислении металлов по теории Вагнера рассматривается как электрохимическая реакция на модели гальванического элемента. [c.12]

    Так, например, наряду с обычными примерами применения закона Гесса (часть первая) рассмотрено его использование в различных термохимических циклах, включающих такие величины, как потенциал ионизации, электронное сродство, энергия решетки, теплота гидратации. Это позволяет продемонстрировать студентам универсальность простого метода расчета и уже с самого начала связать излагаемый материал с вопросами строения вещества. [c.4]

    Бертолле обсуждает и случаи двойного разложения солей. При этом он особенно отчетливо показывает ошибочность представлений Бергмана о силе химического сродства. Бертолле рассматривает случай, когда к раствору сульфата натрия добавлен раствор хлорида магния. При этом в растворе образуются четыре соли — сульфат натрия, хлорид магния, сульфат магния и хлорид натрия. Если теперь охлаждать раствор, то при 0° С из него будет кристаллизоваться сульфат натрия — наименее растворимая при этой температуре соль в растворе. При 20 С можно получить в кристаллическом виде прежде всего хлорид натрия. Таким путем, при различных температурах оказывается возможным разделить смесь на две соли, причем в одном случае на сульфат натрия и хлорид магния, в другом — на хлорид натрия и сульфат магния. Это доказывает, что химическое сродство — величина, зависящая от температуры, а вовсе не какая-то определенная сила , присущая данному веществу, как полагал Бергман. [c.430]

    Эта величина (со знаком плюс) носит название сродство (атома хлора) к электрону. Она известна менее точно, чем другие величины этого цикла. [c.65]

    Энергия ионизации брома и его сродство к электрону соответственна составляют 1143 и 342 кДж/моль. Выразить эти величины в электронвольтах на атом. [c.50]

    Поскольку все термодинамические потенциалы являются величинами экстенсивными, химический потенциал, так же как и химическое сродство, есть величина интенсивная. Он, однако, имеет ряд особенностей. По определению (уравнение (1.59)), химический потенциал есть какой-либо термодинамический потенциал (для определенности будем в дальнейшем говорить о свободной энергии Гиббса), отнесенный к одному молю вещества. Однако потенциал Гиббса имеет свойство экстремальности. Такое свойство присуще и химическому потенциалу, который точно так же состоит из равновесной составляющей, не зависящей от условий процесса, и некоторой переменной, зависящей от условий процесса, т. е. вида функции [c.39]

    Эта работа была продолжена другим шведским минералогом Торберном Улафом Бергманом (1735—1784). Бергман развил теорию, объясняющую, почему одно вещество реагирует с другим веществом, но не реагирует с третьим. Он же предположил, что между веществами существует сродство (affinities), и составил тщательно выверенные таблицы различных величин сродства. Эти таблицы пользовались широкой известностью при жизни их создателя и пережили его на несколько десятилетий. [c.44]

    Итак, критерием протекания процесса — мерой химического сродства является убыль О, т. е. — АС. Таким образом, для совокупности веществ при данных температуре и давлении (концентрации) мерой химического сродства будет величина АО. Это движущая сила процесса. Чем АО меньше нуля, тем дальше система от состояния химического равновесия и тем более она реакционноспособна. [c.183]

    Таким образом, для совокупности веществ при данных температуре и давлении (концентрации) мерой химического сродства будет величина Л(3. Это движущая сила процесса. Чем АО меньше, тем дальше система от состояния химического равновесия и тем более она реакционноспособна. Вышеизложенное на [c.46]

    В соответствии с уравнением (И. 10) влияние температуры на химическое сродство определяется знаком и величиной Д5.Это позволяет нагреванием (или охлаждением) увеличить или уменьшить реакционную способность веш,ества или совокупности веществ, усилить стремление к протеканию нужного процесса (из совокупности конкурирующих реакций, т. е. обладающих близкими АО) и т. д. Если Д5 >0, то переход на высокотемпературный режим благоприятствует течению процесса это особенно важно в тех случаях, когда при низких температурах, вопреки отрицательному значению АО, реакция в силу инертности реагентов не протекает. Так, хотя для реакции [c.270]


    Проследим взаимосвязь изменения характера устойчивости сильнонелинейной кинетической системы с изменением ее термодинамических свойств при соответствующем изменении некоторых параметров системы. В качестве изменяющегося параметра для химически активной системы целесообразно выбрать значение текущего химического сродства, например некоторого брутто-процесса или пропорциональных этому сродству величин, которые характеризовали бы удаленность системы от положения равновесия. [c.367]

    Обозначив внутреннюю энергию и энтальпию этого состояния через Uq и iig, Прибавим и вычтем из значений стандартного химического сродства величину Aiig = затем разделим полученное тождество на абсолютную температуру Т. В результате будем иметь [c.95]

    Эле1Гтроннов сродство. Присоединение электрона к атому с обра аованием отрицательного иона сопровождается выделением энергии Xб. кал моль. которая называется электронным сродством. Величина последнего может быть в гфивципе найдена теми же способами, как и потенциал ионизации. Подобно тому как граница спектра атомарного водорода отвечает энергии его ионизации (Н—>Н- + в), граница спектра аниона С отвечает ионизации последнего (а —>01 +в), на которую затрачивается энергия X. Такое спектроскопическое определение электронного сродства затрудняется однако незнанием деталей спектров анионов, которые удавалось промерять лишь в редких случаях. [c.87]

    Природу ионной связи, структуру и свойства ионных соединений можно объяснить с позиций электростатического взаимодействия ионов. Способность элементов образовывать простые ионы обусловлена электронной структурой их атомов. Эту способность можно оценить величиной энергии ионизации и сродства атомов к электрону. Понятно, что легче всего образуют катионы элементы с малой энергией ИОНИЗЯИ.ИИ -Ц- тттрлпцнпчрмрлкныо металлы. Об- [c.86]

    Интересно заметить, что величина констапты о для различных заместителей может быть грубо объяснена отпосител1.пым сродством к ялектрону. Однако ко многим предложенным объяснениям следует подходить осторожно, в частности в тех случаях, когда величина а так мала, что введе"11ие заместителей вызывает изменение лишь на единицу рК и меньше. [c.525]

    Особо важное значение в химических процессах имеет термодинамический потенциал, т. е. изменение свободной энергии системы (А/ ). Выражая собой ту часть внутренней энергии системы, которая способна превращаться в полезную работу, величина ДР данного химического процесса служит тем самым мерой химического сродства реагирующих компонентов, т. е. мерой их реакционной способности. Чем больше абсолютная величина изменения свободной энергии или, что то же, чем больше значение максималыюи работы данного химического процесса, тем полнее они вступают между собой в химическое взаимодействие. Если мы говорим, что данные вещества реагируют между собой недостаточно энергично, то это означает, что они имеют небо,пьшое изменение свободной энергии в наблюдаемом процессе химического взаимодействия или, что то же, максимальная работа, которую требуется затратить на этот процесс, очень велика [c.167]

    Колебание сопровождается изменением диполя, если центр тяжести составляюн их ядер (т. е. центр положительного заряда) не совпадает с электрическим центром электронов, ышзанных с ними. Это условие выполняется, если различные атомы обладают разным сродством к электрону. При этом можно считать, что электрон вза1гмодействует с одним атомом больше, чем с другим. Следовательно, ковалентная связь между неодинаковыми атомами связана с наличием дипольного момента. Оценка относительной величины диполя, а следовательно, и интенсивности инфракрасного поглощения, может быть сделана путем рассмотрения относительного сродства к электрону у нескольких простых элементов. Сравнительная шкала электроотрицательности [31] дает следующие величины  [c.316]

    Путем комбинации новых данных Стивенсона [36, 37] по поте[щиалам ионизации алкилрадикалов (до ионов алкилкарбония) с основными термохимическими величинами (табл. 6) были вычислены величины сродства [c.117]

    В табл. 4 приводится сродство нескольких наиболее важных олефинов с ионами карбония, — что мо>кет дать представление о виличине энергии, свойственной этому типу реакции. Приведенные в таблице цифры рассчитаны по данным табл. 2, 5 и 6. Величины энергии, соответствующие обратным реакциям каталитического крекинга, были получены простой переменой алгебраических знаков в табл. 4 (исключение составляет реакция 2, поскольку в нее включена дополнительная стадия изомеризации).  [c.121]

    В. табл. 5 в графе Теплота реакции приводятся величины энергии для реакции такого типа. Эти величины были рассчитаны по основным термодинамическим данным, ука.занпым в табл. 5 и б, и приводимому в табл. 2 сродству протонов с олефинами (табл. 2).  [c.123]

    Точность полученной величины определяется погрешностью наименее точно известного слагаемого, каким является сродство к электрону атома хлгрл. Эга величина часто находится из того же цикла Борна—Хабера в этот цикл подставляется величина эиергии кристаллической решетки, вычисляемая пе уравнению Борна, которое учитывает энергию электростатического взаимоден-стния ионов в кристаллической решетке. [c.66]

    В этом случае следует ожидать ускорения реакции с увеличением сродства металла к электрону. Последняя величина с достаточной точностью характеризуется работой выхода электрона из решетки металла. Данные, приведенные на рис. XIII, 13, показывают, что теоретическое предположение вполне оправдывается. [c.364]

    В основе этой тенденции лежит общий закон, определяющий направление химической реакции. Ее движущей силой является изменение энергии Гиббса, которое должно удовлетворять условию ДС°<0. Чем меньше алгебраическая величина AG°, тем больше химическое сродство реагирующих веществ и тем больше сдвиг равновесия в направлении образования продуктов реакции. Так, сопоставляя реакции образования малорастворимых галогенидов серебра из состаЕ ляю щих их ионов в растворе, например Ag (р) + I (р) -fi- Ag l (T) [c.128]

    Согласно первому простому определению Малликена, электроотрицательность элемента полагалась пропорциональной сумме его первой энергии ионизации и сродства к электрону. Вычисленные таким образом электроотрицательности не вполне согласуются с численными значениями, приведенными в табл. 9-1, поскольку указанные там же значения энергии ионизации, сродства к электрону и электроотрицательности вычислены различными исследователями и разными методами. Тем не менее наблюдается приблизительная пропорциональность между указанными выше величинами. Воспользовавшись данными табл. 9-1, постройте график зависимости суммы энергии ионизации и сродства к электрону от электроотрицательности элементов для второго и третьего периодов, а) Проведите наилучщим способом прямую линию, проходящую через нанесенные на график точки и начало отсчета. 6) Воспользуйтесь построенным графиком для оценки электроотрицательности Ме. Если бы существовала связь Ме—Е, ионной или ковалентной она должна была оказаться в) При помощи построенного вами графика оцените сродство к электрону для элементов пятого периода от рубидия, ЯЬ, до индия, 1п. Постройте график зависимости сродства к электрону этих элементов от их порядкового номера. Объясните общую закономерность изменения сродства к электрону у переходных металлов пятого периода и аномальное поведение этого [c.413]

    Экспериментально установлено [17], что изотермы сорбции ЗОг в указанных полимерах нелинейны и удовлетворительно описаны формулой изотермы двойной сорбции. Сродство сорба-та и полимера в процессах абсорбции и адсорбции характеризуется параметрами и К . Величины о " и не имеют устойчивой корреляции с изменением разности —1, рднако большему сродству в процессе абсорбции соответствует большее сродство при адсорбции на поверхности дисперсной фазы в полимере. Чем ниже и, тем выше подвижность молекул ЗОг в полимере, хотя концентрация растворенного газа при этом падает. Наименьшие значения о , /С и о отмечены для поливинилтриметилсилана (ПВТМС). Высокие значения коэффициента проницаемости в этом полимере обеспечены за счет большей скорости диффузии ЗОз. [c.82]

    Электроотрицательность элементов. Представим себе, что атомы А и В вступают во взаимодействие и что химическая связь осуществляется за счет смещения электрона от одного атома к другому. Возникает вопрос, какой из этих атомов оттянет на свою оболочку электрон Допустим, электрон переходит от А к В, и что этот процесс связан с выделением энергии (Ев — /л), где Еа — сродство к электрону атома- В, /д — энергия ионизации атома А. При обратном переходе будет выделяться энергия ( д--/в). Направлен Ге процесса определится выигрышем энергии, так как выделение энергии стабилизирует систему. Допустим, что факти-чрскп электрон переходит от атома А к атому В. Это означает, что ( в —/л) > ( а —/в) или (/в + 3) > (/а + а). Величина [c.66]

    Согласно представленному циклу процесс образования кристалли ческого хлорида натрия из твердого металлического натрия и ГН зообразного хлора возможен по двум путям. Первый путь состоит в превращении натрия и хлора в состояние ионов Na+ и С1 и образовании из них твердого хлорида натрия. В соответствии с определением понятия энергия кристаллической рещетки при образовании Na l из газообразных ионов выделяется энергия, равная по абсолютной величине Uo. Для получения ионов натрия требуется перевести металлический натрий в газообразное состояние. На это затрачивается теплота возгонки ДЯвозг. Затем нужно подвергнуть атомы ионизации, что требует энергии ионизации/ма. Для получения ионов хлора необходимо сначала разорвать связь в молекуле СЬ (на получение 1 моль С1 потребуется /г св), затем к атому хлора нужно присоединить электрон, оторванный от атома натрия при этом выделяется энергия сродства к электрону E u Все указанные здесь величины мo yт быть измерены. [c.153]

    Значительное выделение тепла АНт С 0) при образовании галидов натрия можно рассматривать как критерий их устойчивости относительно простых веществ, а возрастание этой величины в ряду Nal—NaBr—Na l—NaF — как свидетельство увеличения химического сродства галогенов к натрию с уменьшением их порядкового номера (различие в агрегатном состоянии галогенов не отражается на ходе значений ДЯгэя). Оба вывода отвечают действительности. [c.52]

    ДОгпа = —2,5 ккал. Первая величина отвечает большому сродству рубидия к кислороду (ои легко окисляется), вторая — непрочности окиси серебра. [c.264]

    Рассмотрим нестационарное, но установившееся состояние химической системы, где протекает реакция типа (2.28). Такое состояние можно реализовать в виде непрерывного процесса при поддержании на постоянном уровне концентраций реагентов и продуктов. Пусть это состояние характеризуется некоторыми значениями химического сродства в прямом и обратном направлениях и Тогда можно оценить величины производных д1г1дВ1.° и д1г1дВ г в данном состоянии. Так как рассматриваемое состояние удалено от точки равновесия, то, вообще говоря, значения этих производных не равны друг другу [c.125]

    Выходят монографии Шоттки, Улиха и Вагнера Льюиса и Рендала курс химической термодинамики Улиха содержащие названные таблицы. В работах де Донде вводится концепция сродства как величины, характеризующей необратимость реакции. Эти представления изложены в систематической форме в книгах Пригожина и Дефэя  [c.19]


Смотреть страницы где упоминается термин Сродство его величина: [c.127]    [c.6]    [c.1480]    [c.1480]    [c.156]    [c.134]    [c.405]    [c.131]    [c.111]    [c.25]    [c.67]    [c.246]    [c.122]   
Избранные работы по органической химии (1958) -- [ c.46 ]




ПОИСК





Смотрите так же термины и статьи:

Величины, связанные с энергией молекулярной системы полная электронная энергия, потенциал ионизации, сродство к электрону, энергии возбуждения

Влияние фазового превращения на величину химического сродства

Парный и величина сродства

Полярность и величина сродства

Скорость и величина сродства

Смысл величины стандартного сродства

Сродство

Сродство определение величины

Физиологические концентрации субстратов близки к величинам Км Модуляторы обычно изменяют сродство фермента к субстрату, а I не значения Ушах

Функциональное значение высоких и низких величин сродства между ферментом и субстратом



© 2025 chem21.info Реклама на сайте