Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Использование изотопов в масс-спектрометрии

    Масс-спектрометр позволяет проводить исследования атомного строения веществ с большой точностью, и с его помощью были установлены важные результаты. Прежде всего, использование масс-спектрометра позволило наглядно продемонстрировать идею Дальтона о том, что атомы различных элементов имеют различные массы. В самом деле, пучки положительно заряженных частиц, образующихся от каждого элемента, имеют характерную для него массу. Далее, средние значения масс элементов, установленные с помощью масс-спектрометра, находятся в точном соответствии с атомными массами, которые были установлены с большими затратами усилий на основании самого тщательного анализа химических реакций с применением аналитических весов. Наконец, поскольку масс-спектрометр позволяет измерять массы индивидуальных атомов (точнее, массы их положительно заряженных ионов) и разделять атомы с неодинаковыми массами, его применение привело к открытию изотопов (атомов одного элемента с различными массами). При этом оказалось, что представление Дальтона о полной идентичности всех атомов одного элемента неверно. С химической точки зрения атомы одного элемента совершенно идентичны, но они могут обладать несколько отличающимися массами. [c.60]


    Другое важное применение масс-спектрометрии, основанное на использовании изотопов, состоит в исследовании обменных реакций с участием соединений, содержащих нерадиоактивные изотопы. Для определения скорости обмена изучают во времени содержание изотопа в продукте превращения меченого исходного вещества. Продукт или исходное соединение можно разложить до газообразного вещества, содержащего метку, и из масс-спектра получить изотопное отношение. Эти вещества можно также исследовать непосредственно, и из анализа изменений в спектре различных фрагментов можно установить местонахождение и количество метки. Определяя, какие пики в спектре изменяются при внедрении изотопа, можно выявить части молекулы, участвующие в обмене. С помощью метки и масс-спектрального анализа было показано, что эфирный кислород в продукте реакции метанола с бензойной кислотой принадлежит метанолу  [c.324]

    Атомные веса элементов в разные периоды измерялись по отношению к различным стандартам. Под влиянием гипотезы Проута [1634, 1635] атомные веса элементов были приняты точно кратными водороду, наиболее легкому элементу, атомный вес которого был принят равным единице. Впервые атомный вес элементов с точностью до 0,5% был измерен Берцелиусом [182] в качестве стандарта он использовал кислород, принятый за 100. Берцелиус отверг применение водорода для этих целей, так как он слишком легок и редко входит в состав неорганических соединений. Берцелиус считал наиболее удачным стандартом кислород, так как последний вступает в соединение с большинством элементов и представляет собой как бы центр, вокруг которого вращается вся химия . Тем не менее водород использовался многими исследователями, пока в начале настоящего столетия, в 1905 г., не был отвергнут решением Международной комиссии по атомным весам атомный вес кислорода был принят равным 16 [1022]. Таблицы, выпущенные этой комиссией ранее, содержали две серии атомных весов одну по отношению к кислороду, другую по отношению к водороду. Когда оказалось возможным точное измерение масс на масс-спектрометре, возникла необходимость в соответствующем стандарте. Ошибочно полагая, что природный кислород моноизотопен, Астон использовал в качестве стандартной массы изотоп О, надеясь благодаря этому достигнуть идентичности с химической шкалой масс. Кислород можно было считать приемлемым стандартом еще и потому, что, в отличие от водорода, при использовании О = 16,000000 а. е. м. массы всех других изотопов были очень близки к целым числам. Астон показал, что массы изотопов не являются точно кратными целым числам [84, 85]. Некоторые из его измерений чрезвычайно точны и используются до настоящего времени [1097, 1509]. [c.41]


    Как указано в гл. 3, молекулярная масса достаточно термостойкой и летучей пробы, способной образовать достаточно интенсивный для измерения пик молекулярного иона, может быть установлена с помощью метода масс-спектрометрии. Кроме того, использование относительного содержания изотопов (т. е. данных об интенсивности ионов М- -1 и М4-2), полученных на масс-спектрографе, разрешающем пики с разницей в 1 а. е. м., или точных значений масс, определенных на масс-спектрографе высокого разрешения, часто позволяет установить молекулярную формулу неизвестного соединения. [c.111]

    Ни один из стабильных изотопов кислорода, азота, углерода или водорода не был открыт масс-спектроскопически, хотя первые точные определения распространенности были сделаны именно этим методом. В ранних работах кислород был признан элементом, состоящим из одного изотопа, и масса была выбрана в качестве эталона масс. Открытие в атмосферном кислороде и в результате изучения полос поглощения кислорода было осуществлено в 1929 г. [738, 739]. За этим быстро последовало открытие и С, проведенное также оптическими методами. Дейтерий не был идентифицирован до 1932 г. Первые определения относительной распространенности изотопов кислорода [81], азота [2076], углерода [82] и водорода [224] масс-спектрометрическим методом были осуществлены несколько лет спустя после открытия изотопов. В отличие от ранних работ, где ошибки возникали при обнаружении и интерпретации массовых линий, поздние измерения проводились с применением масс-спектрометра и ионного источника с электронной бомбардировкой. Возросшая точность идентификации ионов, относимых к каждому массовому пику, привела к открытию многих новых изотопов. Примером прогресса, вызванного более широкими возможностями используемых источников, может служить открытие Ниром [1492] изотопов кальция с массами 46 и 48. Более ранняя работа [83] свидетельствовала о наличии изотопов с массами 40, 42, 43 и 44. Для получения ионного пучка Нир испарял металлический кальций в пучок электронов и получил ионный ток больше 10 а для наименее распространенного изотопа кальция ( Са), присутствующего в количестве лишь 0,003% от изотопа <>Са. При изменении температуры печи в пределах, соответствующих 10-кратному изменению давления, пики с массами 46 и 48 оставались в постоянном соотношении к пикам с массой 40. Это доказывало, что указанные выше пики относятся к малораспространенным изотопам кальция, а не вызваны наличием примесей. Дальнейшее подтверждение существования малораспространенных изотопов было получено изменением энергии ионизирующих электронов и установлением зависимости между изменением интенсивности пучка ионов для каждой массы и изменением энергии электронов. В пределах ошибки эксперимента все ионы обладали одним и тем же потенциалом появления и одной и той же формой кривой эффективности ионизации. Сходные измерения были проведены с использованием двухзарядных атомных ионов. На пики с массами 24 и 23 налагались пики, обусловленные примесью магния и натрия. Эти ионы примесей могли быть обнаружены по их гораздо более низкому потенциалу появления по сравнению с потенциалами двухзарядных ионов кальция. Оказалось возможным провести измерение ионов ( Са) , вводя поправку на присутствующие ионы однако более значительные количества < Ыа) помешали определению ионов кальция при этом отношении массы к заряду. [c.71]

    Неорганическую масс-спектрометрию предпочитают всякий раз, когда необходимо определять крайне низкие концентрации и распространенность изотопов. Область ее применения весьма широка полупроводниковые материалы и керамика, природные пробы, биологические материалы с использованием стабильных изотопов в качестве меток, высокочистые реагенты и металлы, ядерные материалы, геологические пробы, пища и т. д. [c.144]

    Использован малогабаритный масс-спектрометр с секторным полем, в котором после переделок имелась возможность настройки прибора на определенное массовое число, характерное для исследуемого соединения или группы соединений. Приведено несколько примеров успешного использования прибора для анализа смесей неизвестного состава, в частности, было определено содержание тетраэтилсвинца по изотопу РЬ . [c.182]

    Первый масс-спектрометр (МС), который был разработан для анализа неорганических веществ, описан в 1950-х гг. в нем в качестве источника ионов использовалась радиочастотная искра. Пределы обнаружения уже тогда были в диапазоне миллионных долей. Впервые использование плазмы в качестве ионного источника описано Греем в 1975 г. Была использована капиллярная дуговая плазма постоянного тока. Пределы обнаружения для этого прибора были уже на уровне менее 10 . Использование индуктивно-связанной плазмы (ИСП) приходится на середину 1980-х гг. Оно дало подъем растущему рынку неорганической масс-спектрометрии. Большое число компаний, производящих приборы для ИСП-МС, является доказательством интереса к этому методу. Неорганическая масс-спектрометрия полезна не только для определения эле-ментов в разнообразных пробах, но и для измерения распространенности природных изотопов, а также в методе изотопного разбавления. [c.132]


    Масс-спектрометрия изотопного разбавления обеспечивает высокие правильность и воспроизводимость, основанные на использовании добавок стабильного изотопа. [c.143]

    В качестве индикаторов применяются как стабильные, так и радиоактивные изотопы. В случае применения стабильных индикаторов измерения проводятся на масс-спектрометре при использовании радиоактивных изотопов — на счетчике Гейгера-Мюллера. [c.229]

    Общий недостаток метода применения тяжелых изотопов и их масс-спектрометрического определения заключается в его невысокой чувствительности, обусловленной, главным образом, относительно большим содержанием (около 1 %) природного С. По этой причине в масс-спектре любого органического соединения с десятью атомами углерода уже содержится изотопный пик , имеющий на одну единицу массы больше, чем молекулярный ион интенсивность этого пика составляет 11 % от интенсивности [М]+. В этих условиях присутствие 2 % меченого соединения с одним атомом или С, увеличивающее интенсивность пика иона [М+1]+ до 13%, заметить практически невозможно. Положение облегчается при введении нескольких меченых атомов в том же самом спектре природная интенсивность пика иона [М + 2] + составит только 1 % от интенсивности пика [М]+, так что добавление 2 % метки 2Н2 или можно обнаружить без труда. Однако и в этом случае точность определения невелика. Если такая точность удовлетворяет требованиям эксперимента, то масс-спектрометрия может служить очень удобным методом исследования. Таким образом, этот метод имеет хотя и ограниченные, но очень полезные сферы применения. Например, чувствительности метода масс-спектрометрии достаточно, чтобы вполне надежно определить число введенных в соединение меченых атомов, если полностью меченный в одном или нескольких положениях предшественник удается включить с разбавлением метки не более, чем в 50 раз, Масс-спектрометрия особенно удобна при работе с соединениями, меченными Н, когда полное дейтерирование предшественника обычно не представляет трудностей и когда желательно избежать проявления изотопных эффектов наглядным примером является широкое использование [Ме 2Нз] метионина для изучения процессов С-метилирования. [c.475]

    Содержание кислорода также определяют методом изотопного обмена [1293] с использованием стабильного изотопа 0. Процесс проводят в железной ванне дозировочные образцы готовят из порошкообразного титана и тяжелой воды. Изотопное равновесие в системе устанавливается в течение 20 мин. при 1800° С. Газ отбирают в ампулу и анализируют на масс-спектрометре. В 5 г Ке определяют 2-10 % О с ошибкой 1%. Продолжительность анализа 3 часа. [c.277]

    Учитывая возрастающее количество ограничений на использование радиоизотопов в клинических исследованиях человека, МС-анализ с ионизацией ИСП приобретает исключительное значение в медицине, особенно если учесть уникальную способность масс-спектрометров с ИСП к быстрому (за 1-2 мин) определению концентрации стабильных изотопов в жидкостях тела человека. [c.854]

    Масс-спектрометрия позволяет выполнять количественные определения различных элементов методом изотопного разбавления с использованием стабильных изотопов. [c.313]

    Дейтерий, и часто обнаруживают теперь с помощью масс-спектрометра, а дейтерий — еще иногда и по измерениям плотности. При использовании материала с большой концентрацией изотопа весьма удобна и пригодна абсорбционная спектроскопия. Подробные методики, возникающие трудности и относительные достоинства различных методов регистрации изотопной воды обсуждались в ряде статей [74, 153]. Масс-спектрометр является наиболее гибким прибором в том отношении, что он позволяет анализировать любые химические образцы, если только они могут быть превращены в соответствующие газы. Так, например, наиболее точное определение Н О основано [57] на анализе образующейся при равновесии [c.90]

    В области катализа имеются хорошо разработанные экспериментальные способы исследования. Одним из наиболее эффективных способов продолжает оставаться применение изотопов, причем использование масс-спектрометра для решения ряда каталитических проблем позволило сделать большой шаг вперед в отношении изучения механизма реакций углеводородов. Опубликованы результаты многочисленных исследований хемосорбции и каталитических реакций с применением стабильных и радиоактивных изотопов [47, 48]. [c.493]

    Воспроизводимость и правильность могут быть существенно улучшены при использовании метода масс-спектрометрии изотопного разбавления (МСИР). Известное количество изотопа, обычно малораспространенного стабильного или долгоживущего радиоактивного, добавляют к пробе и тщательно перемешивают для достижения равновесия, что не позволяет применять этот метод для прямого анализа твердых проб. Затем измеряют отношение изото- [c.143]

    Масс-спектрометрия — способ исследования вещества путем ноннзацни атомов и разделения ионов ио величине отношения массы (т) к заряду (е). Массы ионов измеряют в атомных единицах массы, за которую принимают 7(2 часть массы изотопа углерода С. Масс-сиектромет-рию применяют для определения содержания всех элементов и соединений, которые можно перевести в парообразное состояние. При использовании искровой масс-спектрометрии нижний предел определяемых концентраций составляет 10 —10- %. Метод используют в основном для анализа вещества высокой чистоты. [c.45]

    В некоторы.х случаях чувствительность можно повысить применением. масс-сиектрометров с болыни.м разрешением . Эго особенно важно, когда пики, обусловленные ионным токо.м примеси или мало рас- фостраненного изотопа, располагаются рядом с большими пиками, образованными ионным током основного компонента. При использовании обычного масс-спектрометра хвост основного пика на расстоянии одной атомной единицы не удается сделать меньше, чем Ю" от высоты пика . Увеличить чувствительность можно применением двухступенчатого магнитного анализатора, как это было сделано для измерения изотопных концентраций с отношением изотопов порядка 10 1 и более. Путем применения двух расположенных друг за другом магнитных анализаторов была увеличена чувствительность масс-спектрометра на три-четыре порядка в области средних масс. [c.73]

    Электро.магиитный метод основан на зависимости отклонения ионов в электрическом и магнитном полях от отношения т>2 (т-масса иона, г-его заряд), т.е. на тех же принципах, что и. масс-спектрометрия. В-во, содержащее изотопную смесь, переводится в пар, ионизируется, затем ионы ускоряются электрич. полем и попадают в разделит, камеру, -где под действием магн. поля, перпендикулярного направлению движения ионов, смесь разделяется на отдельные пучки с одинаковыми значениями т/г затем пучки собираются в разные приемники. Этим методом можно выделить все изотопы данного элемента. Его применяют для получения малых кол-в изотопов более 50 элементов впервые этим методом было получено неск. кг (1943-45). Недостатки метода малая производительность, низкая спепень использования сырья, сложность аппаратуры, большие энергозатраты. [c.199]

    ТИМС (термоионизационная масс-спектрометрия) является одним из лучших методов по точности (воспроизводимости). Это делает данный метод пригодным для измерения изотопного отношения, особенно при использовании электрометра Фарадея и секторного масс-спектрометра. Воспроизводимость может быть на уровне 0,1%, например для Са/ °Са, Mg/ Mg. В зависимости от приложения может быть необходима поправка на фракционирование изотопов, зависящее от массы. Метод ТИМС относительно нечувствителен к многоатомным помехам, особенно к тем, которые связаны с наличием Аг, таким, как в ИСП-МС (масс-спектрометрия с индуктивно-связанной плазмой) или ТРМС (масс-спектрометрия с тлеюцщм разрядом). Производительность составляет примерно 20 проб в день, что лучше, чем в ИИМС (масс-спектрометрия с искровым источником), но не так хорошо, как в ИСП-МС. [c.142]

    Стабильные изотопы. Дейтерий. Соединения, содержащие дейтерий, обычно сжигают до смеси ВаО — НаО, применяя либо метод Прегля для определения водорода [84], либо метод с использованием запаянных трубок для микроонределений [87]. Содержание дейтерия в образовавшейся воде определяют либо с помощью ИК-спектроснопии [87, 88], либо измерением плотности методом падающей капли [84, 89] или в градиентной трубке [90]. Другой путь состоит в восстановлении воды до водорода [91, 92] или в превращении соединения в один из низших алка-нов [93] с последующим определением содержания дейтерия при помощи масс-спектрометра. [c.36]

    Выбор вероятных молекулярных формул, соответствующих измерениям отдельных масс и изотопного состава, сильно облегчается при использовании таблиц, составленных Бейноном ). Эти таблицы, которые были расщирены [13] до масс 500, могут быть использованы и для масс-спектрометрии высокого разрешения. При массе примерно более 250 использование изотопов для определения молекулярной формулы становится неэффективным. [c.35]

    В случае окислов азота следует проявлять осторожность при отнесении массовых чис л, так как распад при ионизации может приводить к образованию N0, которую можно спутать с N2 [228]. С помощью масс-спектрометров с высоким разрешением можно добиться воспроизводимости с стандартным отклонением 0,1%. При регистрации радиоактивности трудно добиться стандартного отклонения меньше чем 0,5% из-за случайных процессов распада и трудности приготовления образцов. Истинное положение меченого атома в молекуле может быть установлено по масс-спектрограмме, но при радиоактивном изотопе необходимо осторожное проведение химического разложения до простых молекул. Измерения плотности изотопной воды не позволяют выявить тонкие детали, но обычно их воспроизводимость достаточна для многих применений меченых атомов. Изотопное замещение в молекуле вызывает отчетливые спектральные смейте ния, и это обстоятельство может быть использовано для исследования реакций изотопных молекул in situ. Хорошим примером такого подхода является использование быстрорегистрирующего инфракрасного спектрометра для изучения быстрого обмена между 60%-ной концентрации) и NgOg [62]. [c.90]

    Были предложены два таких стандарта. Первый из них был предложен Ниром [1514] и Команом, Маттаухом и Вапстра [1148, 1149, 1339, 1340]. За единицу была принята величина в 1,000318 и 1,000043 раза больше единицы, существующей в физической и химической шкалах масс соответственно. Использование нового стандарта вызвало бы незначительное изменение в существующих значениях химических атомных весов. Предлагаемый стандарт обладает преимуществами главным образом с точки зрения масс-спектрометрии. используется в качестве дополнительного стандарта, так как образует столько различных соединений с водородом, что почти всегда удается провести сопоставление масс изотопов с комбинацией атомов водорода и углерода исключение составляет лишь область низких масс. Так, в диапазоне масс 18—23 получить углеводородные ионы трудно. Универсальность применения соединений углерода в качестве стандарта детально рассмотрена ниже. В качестве химического стандарта углерод менее пригоден поэтому предлагается в химической шкале атомный вес кислорода принимать как массу О с коэффициентом 1,000275. По сравнению с кислородом тяжелые изотопы углерода более распространены природное соотношение изотопов может изменяться, поэтому новое определение не приведет к точному значению для атомного веса элемента-стандарта, и возникнет много трудностей, таких же как и в случае кислорода. Кроме того, углерод взаимодействует с относительно небольшим числом других элементов, в частности не со всеми элементами, используемыми в качестве химических стандартов. [c.43]

    Химики-органики используют для сравнения с углеродом, водородом, азотом и кислородом также массы других элементов. Подходящие для этой цели соединения могут быть выбраны по эмпирической формуле. Примером может служить упомянутый выше дублет Сз — Н С1, обнаруживаемый при массе 78 в смеси бензола (СеНв) и изопропилхлорида (С3Н7С1). Этот дублет использовался в лаборатории автора для изучения разрешающей способности масс-спектрометра. Керр и Дакворт рассматривали дублет СО СЬ— У2 Hg [1097]. Для изучения масс тяжелых изотопов применяются дублеты, включающие фтор. Так, например, ион СзР с массой 169, один из наиболее интенсивных в масс-спектре перфтортрибутиламина, может быть использован для непосредственного измерения массы Ти, которая не так давно была опре-делена масс-спектрометрически. [c.63]

    Измерение абсолютных значений изотопных отношений было осуществлено Ниром 11506] для аргона. Метод Нира применим к любому элементу, изотопы которого могут быть легко отделены один от другого и получены в чистом виде. Для получения отношения истинной распространенности к измеренной в своем масс-спектрометре Нир использовал образец, приготовленный из чистых Аг и Аг. Применяя электростатическую развертку спектра, он нашел, что дискриминации приводят к завышению истинного значения Аг/ Аг на0,63%. Нир использовал этот поправочный коэффициент, вызванный дискриминацией по массам, в своем приборе для получения величин относительной распространенности изотопов углерода, азота, кислорода и калия. Далее измерения были распространены на неон, криптон, рубидий, ксенон и ртуть [1507]. Лишь в случае аргона, когда проводилось прямое сравнение с эталоном, можно было с уверенностью исключить систематическую ошибку. Однако и для других исследуемых образцов принято, что систематические ошибки меньше ошибок, полученных ранее, и что величины распространенностей изотопов, определенные для этих образцов, позволят использовать их как вторичные эталоны. Интересно отметить, что для некоторых элементов, таких, как серебро, хлор и бром, которые состоят из двух изотопов со сравнимой распространенностью, абсолютные значения изотопных отношений точнее вычисляются на основании химических атомных весов и физически определенных масс изотопов, чем прямым измерением на масс-спектрометре. Для таких элементов химический атомный вес и атомный вес изотопа используются для проверки абсолютной точности измерений распространенности. Самый легкий элемент — водород — может быть использован для изучения дискриминации по массам благодаря большой величине отношения масс На и HD. Водород и дейтерий легко доступны задача получения истинных отношений H2/HD решается при анализе искусственных смесей известного состава и сравнением результатов измерения подобных образцов с измерениями смесей неизвестного состава. Это было сделано для образцов, содержащих 0,003—0,830 мол.% дейтерия [808], при использовании ионных источников без вспомогательного магнита. Результаты анализа определенного образца могут колебаться до 3% при изменении условий работы источника при наличии магнита источника изменение изотопных отношений достигало 25%. При использовании магнита источника значение отношения HD/Hg было всегда завышенным наблюдалась тенденция к еще большему увеличению этого отношения с увеличением количества анализируемого образца. Подобные эффекты не отмечались в отсутствие поля магнита источника. В этих условиях для смесей, содержащих около 0,1% дейтерия, была установлена абсолютная точность измерения 3%. [c.78]

    Ошибки определения распространенности изотопов могут возникать при использовании многоатомных молекул вследствие различной вероятности разрьша связей между атомами изотопов. Предположение о полной идентичности изотопов данного элемента (за исключением их массы) часто оказывается недостаточно точным. Разница в энергии связи наиболее резко заметна в случае водорода и дейтерия. Поэтому в настоящий раздел включено рассмотрение общего случая и конкретных примеров анализа изотопов водорода. Ошибки, вызываемые этим фактором, оказываются наибольшими, если относительное содержание осколочных ионов в масс-спектре велико. Однако иногда точные, результаты могут быть получены и при наличии больших осколочных ионов. Рассмотрим молекулы с изотопами АВ и А В, где В представляет собой один атом или группу атомов. Пусть вероятности ионизации для всех типов ионов этих двух молекул относятся, как р р. Пусть вероятность образования молекулярного иона в спектре АВ равна х, а вероятность образования осколочного и многозарядного ионов равна (1—х). Для молекулы А В соответствующие значения выразим какх и (1—х ). Предположим, что в масс-спектрометр вво- [c.87]

    Определение малых отклонений в относительной распространенности изотопов для разных образцов облегчается использованием стандартного образца. Измерение распространенности изотопов в эталонном образце до и после анализа исследуемого образца позволяет оценить случайные ошибки последовательных измерений и величину медленного дрейфа в показаниях прибора. Еще одним методом повышения чувствительности прибора пррс измерении малых изменений относительной распространенности изотопов служит применение двухколлекторной системы, в которой изучаемые изотопные ионы одновременно собираются на отдельных электродах. Этот метод был впервые предложен Астоном [78] и применен Штраусом [1960] для измерения относительных распространенностей изотопов никеля. Измерение распространенности производилось непосредственно нуль-методом. Один из коллекторов ионов находился в фиксированном положении, а другой мог перемещаться при помощи сильфонного микрометрического винта. Такая система может быть использована в широком диапазоне отношений масс изотопов. Разделение при измерении никеля устанавливается в диапазоне двух массовых чисел (измерение изотопов с четным массовым числом) либо трех массовых чисел (измерение отнопкния N1 Применение двойного коллектора позволило Штраусу использовать искровой источник быстрые колебания в интенсивности не оказывали влияния на регистрацию отношения ионных токов. Горман, Джонс и Хиппл [776] распространили этот метод на получение полного масс-спектра в их масс-спектрометре измерялось отношение интенсивности пиков данных ионов к полному ионному току. Суммарная интенсивность ионных токов регистрировалась при помощи электрода, помещенного у входа в магнитный анализатор. Аналогичную [c.96]

    Для поисков редких изотопов и установления верхних пределов распространенности гипотетических ядер были сконструированы специальные приборы. Экспериментально определенный изотопный состав элементов может быть использован для проверки гипотез о строении ядра, и точные таблицы распространенности изотопов жизненно необходимы ядерной физике. При рассмотрении разрешающей силы масс-спектрометра наложение, вызываемое пиком соседней массы, обычно выражают в процентах от высоты этого пика, причем наложение порядка 0,1% считается удовлетворительным. Однако когда один пик значительно превосходит соседний по интенсивности, влияние наложения становится более заметным и чувствительность обнаружения малого пика будет определяться не чувствительностью регистрирующей системы, а скорее этим наложением. Хвосты , связанные с пиками, в обычном аналитическом масс-спектрометре асимптотически стремятся к нулю с обеих сторон пика. Большей частью они вызываются разбросом пучка положительных ионов при столкновении с нейтральными молекулами газа. Однако на них оказывает влияние также разброс ионов в пучке по энергии и (при ионном токе 10 а) дефокусирующее действие объемного заряда [145]. Возможность использования любого прибора для измерения распространенности редких изотопов с любым массовым числом М определяется отношением ионного тока, соответствующего массе М, к ионному току, соответствующему массовому числу М . Приборы с простой фокусировкой, используемые обычно для подобных определений, позволяют получить величину этого отношения (чувствительность определения распространенности), равную 10 для массы 100 при наинизшей величине рабочего давления. Таким образом, наложение равно 1% распространенности изотопа, содержащегося в количестве 1 %. Один из путей повышения эффективной чувствительности определения распространенности заключается в концентрировании редких изотопов путем собирания положительных ионов с соответствующим массовым числом на одном масс-спектрометре и изучения концентрата на втором аналогичном приборе. Чувствительность определения распространенности, достигаемая в таком двухстадийном процессе, равна квадрату чувствительности, получаемой на одном приборе, так что мож но ожидать повышения этой величины до 10 . Такие результаты были получены путем последовательного соединения двух магнитных анализаторов масс на специальном приборе, построенном для изучения редких изотопов. У щели коллектора первого анализатора (дискриминирующая щель объединенной установки) ионы получают дополнительное ускорение и входят во второй анализатор. Необходимо отметить, что увеличение разрешающей силы на этой системе исчезающе мало. Первый такой прибор был построен Инграмом и Гессом [1011] энергия ионов в первом анализаторе была равна 1500 эв, а во втором — 10 ООО эв. Позднее Уайт и Коллинз 12162] построили установку, снабженную 20-ступенчатым электронным умножителем и очень чувствительным широкополосным детектором, что позволило получить высокую чувствительность определения распространенности. Этот прибор схематически изображен на рис. 30. Единственный природный изотоп, открытый за последнее десятилетие, был обнаружен при его помощи [2163] большое число элементов исследуется сейчас на наличие неожидаемых изотопов. Во многих случаях были установлены пределы существования данных изотопов, по порядку равные п-10 %. Например, для величин содержания Ыа и Ыа были установлены пределы, равные соответственно <1 10 % и<3-10 % прежний предел содержания этих изотопов был равен <2-10 %. [c.108]

    Анализу методом изотопного разбавления с использованием масс-спектрометра [307] подвергаются любые элементы, обладающие двумя стабильными или долгоживущими изотопами [1009], т. е. большинство элементов, рассматриваемых в органической химии, за исключением фтора, фосфора, натрия и мышьяка иод, который обладает одним стабильным изотопом, может быть проанализирован при помощи изотопного индикатора Такой индикатор известен под названием совершенного , так как использование его позволяет работать с изолированными пиками. Метод широко применялся для определения европия, самария, гадолиния [840], никеля, цинка, селена, криптона [1687] и ксенона [841], кальция и аргона [1004, 2133], рубидия [1870] истрон-ция [434, 1039, 2037], осмия [906], серебра[883], висмута [205], свинца [332, 1572, 1734], урана [2027] и тория [2028.  [c.111]

    При собирании пучков положительных ионов имеет место отложение нейтральных частиц на коллекторе. Разделение и получение изотопов различных элементов методом масс-спектрометрии служит для получения чистых образцов изотопов для проведения такого разделения был сконструирован специальный прибор [1143, 1517], названный калутроном . К 1955 г. все элементы, имеющие стабильные изотопы, разделяли на калутроне исключение составили осмий и некоторые редкоземельные элементы с высоким атомным весом и инертные газы. По применению калутрона в специальных областях ядерной физики было опубликовано много работ [1090]. Основная проблема состоит в необходимости использования громоздкого оборудования для получения достаточно высокой дисперсии масс, особого ионного источника для получения интенсивных ионных пучков и специальной техники их отбора. На применяемых коллекторах [1516] имеются пазы их число и расстояния между ними выбираются в соответствии с типами ионных пучков разделяемых элементов каждый паз электрически изолирован от средних, что позволяет контролировать поступающий на данный коллектор ионный ток. При попадании сфокусированного ионного пучка на коллектор может выделяться энергия в несколько киловатт в связи с эффектами эрозии и нагрева могут иметь место значительные потери разделенного материала по сравнению с первоначально образовавшимся пучком. Для некоторых элементов лимитирующим фактором получения изотопов является не интенсивность ионного тока, достигаемая в ионном источнике, а невозможность их задерживания на коллекторе. Легколетучие элементы могут собираться на веществах, с которыми они вступают в химическое соединение. Для кислорода, например, может использоваться медный коллектор. Инертные газы в небольших количествах собираются на алюминиевой или серебряной фольге, в которую они проникают в виде атомов [789, 1883]. Особые трудности возникают в случае тяжелых элементов [1659] из-за относительно малого различия в массах их изотопов, что обусловливает необходимость применения коллекторов с тонкими стенками. [c.211]

    Несмотря на то что такие элементы, как сера и галогены, сравнительно часто входят в состав органических соединений, мы сочли возможным не включать их в рассмотрение, поскольку это повлекло бы за собой значительное увеличение размеров таблицы. Присутствие любого из этих элементов легко может -быть обнаружено благодаря необычно высокой относительной распространенности изотопов с массой (X-f 2), где X —масса основного изотопа. Интенсивность пиков ионов, содержащих изотопы, зависит от числа атомов присутствующих элементов. Эти ионы чрезвычайно характерны и легко могут быть обнаружены, что иллюстрируется приведенными ниже примерами, поэтому задача определения количества атомов серы, хлора или брома сравнительно проста. Если известно количество атомов серы или галогенов, то часть массы молекулы, приходящаяся на долю этих атомов, вычитается из измеренного значения массы, и число возможных комбинаций оставшихся атомов в молекуле обычно уменьшается до 2 или 3 путем сравнения оставшейся массы с соответствующими массовыми числами в таблице. Необходимо только рассчитать отношения распространенностей для небольшого числа комбинаций атомов, состоящих из соответствующего количества атомов углерода, водорода, кислорода и азота, которые затем добавляются к ранее установленным для атомов серы и галогенов. Такой расчет довольно сложен и трудоемок, но он может быть проведен на основе использования изотопных соотношений для углерода, водорода, кислорода и азота, представленных в приложении 1. Массы различных комбинаций атомов определяются простым арифметическим подсчетом. Значения масс основных изотопов элементов, используемых в таблице, следующие Щ = 1,008145 = 12,003844 = 14,007550. Эти величины были приведены Огата и Мацуда [1530], но могут быть в настоящее время уточнены наибольшее изменение имело место для (приложение 2). Использование старых цифр дает небольшую разницу при уровне точности, необходимом при химическом анализе, особенно если иметь в виду, что при измерении масс с использованием масс-спектрометра путем сравнения неизвестной массы с известной необходимо, чтобы разница между ними была возможно меньше, а числа углеродных атомов в сравниваемых ионах мало бы отличались одно от другого. [c.301]

    При увеличении количества атомов водорода на единицу интенсивность первого изотопного пика возрастает на 0,0016%. Вычитая 10/С (0,1120 + +0,00016) = 0,11218, получаем значение для распространенности второго изотопа 0,1371 в точном соответствии с цифрой, приведенной в приложении 1 для формулы С10Н15О4. Достаточно хорошая точность была достигнута при применении осколочных ионов с массой 199 даже при использовании масс-спектрометра с простой фокусировкой, поскольку этот осколочный ион теряет только одну единицу массы и не приобретает в процессе образования значительной кинетической энергии. [c.312]

    Определение абсолютного геологического возраста явилось перво1г из задач, для решения которой был использован масс-спектрометр. Основные принципы хорошо известны любому физику. Выбранный для изучения минерал должен содержать значительные количества какого-нибудь радиоактивного изотопа, период полураспада которого сравним с геологическим возрастом, т. е. имеет величину порядка сотен или тысячи миллионов лет. Минерал должен иметь такое строение и струк- [c.514]

    Но эти принципиальные возможности надо еще использовать. В этом отношении пока сделаны только первые весьма обнадеживающие шаги. Поэтому доклады целого заседания посвящены преимущественно работам, выполненным с использованием новых перспективных методов. Это и ядерный магнитный резонанс в докладе Фрейссара и др. [1] и масс-спектрометрия с эмиссионными точечными источниками ионов в докладе Блока [2] и многие другие. Следует отдельно остановиться на изотопных и газохроматографических методах. Они уже сейчас играют выдающуюся роль в изучении сложного катализа. Но несомненно, что их возможности далеко не исчерпаны. Неудивительно, что эти методы используются в большей части представленных докладов. Объем ценной информации и проникновение в стадийный механизм сложного катализа сильно возрастают при сочетании названных методов в изотопной радиохроматографии. Ей уделено значительное место в лекции Исагулянца и Яновского [3], посвященной применению изотопов и хроматографии в катализе, о же сочетание двух методов успешно используется также в докладах Аткинса и Хаппеля [4] и Гучи и Тетени [5]. Здесь настоятельно ощущается потребность в созда  [c.5]

    Таким образом, проведенные исследования показали возможность использования метода лазерной масс-спектрометрии для безэталонного изотопного анализа многокомцонентных биологических объектов. Обнаружены сущест Венные различия в элементном и изотонном составе наружного и внутреннего слоя речной раковины мидии. Это, ио-ви-димому, указывает на процессы разделения и об мена изотопами в живом организме, при протекании химических радикальных реакций. Рассмотрены основные ядерные характеристики легких элементов и установлена корреляция между аномальным фракционированием изотопов и энергией связи нейтронов в цх ядрах. Наблюдаемые в эксперименте изотопные аномалии качественно объяснены с помощью ядер-но-спинового изотопного эффекта. [c.44]

    Метод изотопного разбавления имеет довольно большую историю. Так, напрнмер, он был использован Хевеши еще в 1934 г. Однако, как можно видеть из списка литературы, его основное развитие происходило в течение последних 5—10 лет. Это было обусловлено как возросшей доступностью обогащенных изотопов, получаемых главным образом путем электромагнитного разделения, так и успехами масс-спектрометрического анализа, в особенности анализа твердых веществ. В прошлом ограничивал примерхение метода недостаток нужного оборудования. Однако в настоящее время имеются выпускаемые промышленностью масс-спектрометры для анализа твердых веществ. Поэтому можно ожидать, что метод изотопного разбавления будет применяться все шире и шире. [c.121]

    Одним из затруднений в получении пригодных для аналитических целей масс-спектров было введение известного объема высококипящей жидкости в масс-спектрометр. Чтобы преодолеть эту трудность и получить масс-спектры, которые прямо можно сравнивать один с другим, были разработаны методы стандартизации масс-спектров по суммарной интенсивности ионов. По методам Крэйбла и Коггешэла [3] и Худа [4] полный масс-спектр или любой единичный пик нормируется умножением их на рассчитанную суммарную интенсивность ионов, образующихся из данного образца, и делением их на сумму высот пиков экспериментального масс-спектра. Этот метод применим для стандартизации масс-спектров как чистых веществ, так и тяжелых фракций нефти. Стандартный масс-спектр может быть использован в его первоначальной (полиизотопной) форме или преобразован в м оноизотопную форму (свободную от тяжелых изотопов). [c.176]


Смотреть страницы где упоминается термин Использование изотопов в масс-спектрометрии: [c.86]    [c.23]    [c.86]    [c.106]    [c.83]    [c.88]    [c.142]    [c.191]    [c.497]    [c.518]   
Смотреть главы в:

Основы масс-спектрометрии органических соединений -> Использование изотопов в масс-спектрометрии




ПОИСК





Смотрите так же термины и статьи:

Масс-спектрометр

Масс-спектрометрия

Масс-спектрометрия изотопы

Масс-спектрометрия масс-спектрометры



© 2025 chem21.info Реклама на сайте