Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Фториды с низкой энергией связи

    В. Фториды с низкой энергией связи [c.312]

    При взаимодействии с фторид-ионом благоприятное изменение общей свободной энергии, несмотря на отрицательный вклад изменения энтальпии, обусловлено положительным изменением энтропии. Такое изменение энтропии, способствующее комплексообразованию, связано с тем, что при координации фторид-иона железом (П1) освобождается большое число молекул воды, связанных фторид-ионом. В случае менее сольвати-рованного хлорид-иона, который окружен меньшим числом молекул воды вследствие большего размера иона, наблюдается соответственно более низкий энтропийный эффект при образовании комплекса. Наблюдаемое изменение энтальпии при комплексообразовании, конечно же, представляет собой суммарный эффект изменений энтальпии нескольких процессов и включает энтальпию сольватации всех частиц, находящихся в растворе, а также энтальпию разрушения связи железо (П1) — вода и образования связи железо (П1)—галогенид-ион. Несколько менее благоприятное изменение энтальпии в случае комплексообразования с хлорид-ионом, вероятно, обусловлено меньшей прочностью связи железо(П1)—хлорид-ион и большим размером хлорид-иона по сравнению с фторид-ионом. [c.259]


    Среди всех галогенов фтору присущ ряд особенностей аномально низкие значения энергии сродства атома к электрону и энергии связей Р—Р плавиковая кислота в отличие от остальных галогеноводородных кислот слабо диссоциирует в растворе температуры кипения н плавления НР аномально высокие существуют устойчивые дифториды, в то время как ионы НЭГ других галогенов нестабильны фториды серебра в отличие от других галогенидов серебра хорошо, а фториды кальция и бария, наоборот, труднорастворимы. Чем обусловлены эти особенности фтора  [c.106]

    Октаэдрическая группа фторидов довольно обширна (см. табл. 6). Пентафторид брома был рассмотрен в разделе о фторидах с низкими энергиями связи. К той же группе фторидов принадлежат гексафториды, перечисленные в левой колонке табл. 6 с типом симметрии О . Из оставшихся фторидов с координационным числом 6 только гексафторид серы и пентафторид иода могут иметь практическое значение вследствие их доступности. Умеренный термодинамический потенциал реакции фторирования гексафторидом серы несколько скрадывается медленным течением реакции. Энергии активации для этих реакций очень высоки по причинам, которые уже обсуждались на примере четырехфтористого углерода. Пентафторид иода обладает значительно большей кинетической реакционной способностью [26]. Он обладает повышенной акцепторной активностью равновесие приведенных ниже реакций сильно сдвинуто вправо [c.318]

    Отличительная черта химии актинидов — переменность их валентности. Кроме того, способность малых по размерам, трудно поляризуемых анионов (например, фторид-иона) заставлять какой-либо данный элемент-партнер проявлять высшую валентность приводит в ряду фторидов актинидов (табл. 1) к группе соединений с очень разнообразными свойствами. Переменность валентности (особенно по сравнению с лантанидами) отражает более низкие энергии связи и большее простирание электронной оболочки 5 в отличие от оболочки 4/. В свою очередь это обусловливает более легкую достижимость высших валентных состояний и стабилизацию последних при образовании комплексов. В табл. 1 даны электронные конфигурации газообразных атомов металлов, а также (в тех случаях, когда это известно) атомов металлов во фторидах. [c.131]

    Фтор, занимая верхний правый угол таблицы периодической системы элементов Д. И. Менделеева, обладает наивысшей электроотрицательностью. В связи с этим при связывании с любым химическим элементом, в том числе и с углеродом, фтор при определенных температурах способен к образованию только фторидов, так как возникающая общая пара электронов притягивается к фтору. В то время как энергия ковалентной связи фтора с углеродом равна 536 кДж/моль, энергия связи между атомами фтора примерно 157 кДж/моль. Вследствие этого при нагревании газообразный фтор легко диссоциирует при относительно низких температурах с переходом в атомарное состояние [c.378]


    Свойства органических соединений фтора. Энергия связи С— р очень высока, 486 кДж-моль (сравнительно с энергией связи для С—Н, 415 и С—С1, 332 кДж-моль ), но органические фториды вовсе не обязательно обладают особой термодинамической стабильностью. Низкую реакционную способность фторпроизводных можно объяснить невозможностью расширения октета электронов фтора и неспособностью, скажем, молекул воды координироваться по фтору или углероду на первой стадии реакции при гидролизе. С хлором такая координация возможна за счет использования внешних -орбиталей. Размеры атома фтора малы, поэтому замещение водорода на фтор может протекать с наименьшими искажениями и напряжениями, возникающими при замещении его -другими галогенами. Атомы фтора также эффективно экранируют атомы углерода от атак. Наконец, поскольку можно рассматривать углерод, связанный с фтором, как сильно окисленный (в то время как во фрагменте С—Н он восстановлен), то тенденция к окислению кислородом отсутствует. Фторуглероды реагируют только с нагретыми металлами, например с расплавленным натрием. При пиролизе расщепление С—С-связей происходит в них легче, чем разрыв связей С—Р. [c.394]

    Фтор в сочетании с большинством элементов, не считая углерода, способен давать топливные системы с лучшими энергетическими показателями чем кислород и кислородсодержащие окислители. Кроме высокой энергии связи фтора в образующихся веществах, это отчасти объясняется тем, что фториды имеют более низкие температуры кипения, чем окислы. Температура кипения борного ангидрида 1860°G, а фторида бора — 101°С. [c.24]

    Согласно этим данным, образованию фторидов ксенона способствуют низкие температуры, однако ниже 120°С никаких продуктов в результате экзотермической реакции не образуется. Поскольку для разрыва связи в молекуле фтора требуется заметная энергия (38 ккал/моль), эти экзотермические реакции проходят только при температуре выше 300 °С (ЯТ = =18 ккал/моль). Для проведения реакции при более низких температурах в качестве источников энергии использовали электрический разряд, излучение ртутной лампы высокого давления, гамма-излучение °Со. Успех синтеза ХеРг зависит от того, на- [c.265]

    Применимость метода валентных связей к интерпретации экспериментальных данных пока все еще весьма ограничена. Этот подход позволяет, однако, значительно лучше понять физическую природу связи в соединениях инертных газов. Распределения заряда в основном состоянии фторидов ксенона, найденные как методом МО, так и методом ВС, весьма близки. Оба метода предсказывают значительное смещение заряда от ксенона к фтору. В методе МО этот результат обусловлен низким потенциалом ионизации (т. е. кулоновским интегралом) центрального атома инертного газа [14, 19]. В методе ВС определяющими являются ионные структуры действительно, ионные структуры Г Хе" —Р и Г—Хе+Р" вполне устойчивы [30]. Электростатическая энергия образования Хе Р (приближенно равная /хе —Лр —= 1,7 эв), по-видимому, возмещается энергией образования связи Хе+—Р [30]. Это общее соображение показывает важность низкого потенциала ионизации центрального атома, электроотрицательности лигандов и небольших размеров лигандов при образовании соединений инертных газов. Преимущество фтора по сравнению с другими галогенами обусловлено не только величиной его сродства к электрону, но и меньшими его размерами [30]. К сожалению, в настоящее время нельзя сделать более обоснованных заключений. [c.55]

    Ф,- один из сильнейших окислителей и фторирующих реагеигов. Благодаря высокой энергии связи элемент — фтор во фторидах и низкой энергии диссоциации 2 многие р-ции фтори вания простых в-в, оксидов, галогенидов и др. соед. необратимы, сопровождаизтся вьщелением большого кол-ва тепла и образованием фторидов элементов в высш. степенях окисления. Все хим. элементы, за исключением Не, N6 и Аг, образуют устойчивые фториды. [c.198]

    Грэм [29] предположил существование некоторой ковалентной связи между специфически адсорбированными анионами и ртутью. В качестве доказательства, подтверждающего это предположение, он привел линейную зависимость между дифференциальной емкостью при предельно положительных потенциалах, при которых только могут быть проведены измерения, и логарифмом концентрации ионов ртути в солях, соответствующих данному аниону. Эта интерпретация природы специфической адсорбции была отвергнута Левиным, Беллом и Кальвертом [31], которые считали причиной специфической адсорбции- действие сил изображения (см. раздел 4 этой главы), и Бокрисом, Деванатханом и Мюллером [32], которые утверждали, что степень и тип ионной гидратации являются главным фактором, который необходимо учитывать. Последняя группа авторов привела в качестве аргумента против интерпретации Грэма несоответствие между энергией связи галогенидов ртути (32, 23, 17 и 7 ккал1моль при переходе от фторида к иодиду) и степенью ад-Сорбируемости галогенов на ртути. Эти данные относятся к условиям, очень отличным от тех, которые существуют на поверхности раздела ртуть/раствор, но эта оговорка вряд ли может быть причиной такого расхождения. Бокрис и др. полагают, что ионы с высоким первичным числом гидратации обнаруживают малую склонность к специфической адсорбции, тогда как ионы с низким числом первичной гидратации проявляют сильную специфическую адсорбцию, в случае если электростатическое отталкивание не слишком велико. (О различии между первичной и вторичной гидратацией см. в работе Конуэя и Бокриса [33].) Общей тенденцией (табл. 4) является возрастание специфической адсорбции при переходе от к Сз+ и от к 1 . Несомненно, кроме гидратации, нужно учитывать и другие факторы, [c.74]


    Молекулярные фториды как металлов, так и неметаллов обычно представляют собой газы или летучие жидкости. Их летучесть обусловлена тем, что между молекулами нет других связываюш,их сил, кроме вандерваальсовых, так как поляризуемость фтора очень мала, и у него нет внешних орбиталей, пригодных для взаимодействий другого типа. Если центральный атом имеет доступные вакантные орбитали и в особенности в том случае, когда полярность простых связей М—Р такова, что на атоме М возникает значительный заряд, как, скажем, в случае 8Рб, могут возникнуть кратные связи за счет перекрывания заполненных р-орбиталей фтора с вакантными орбиталями центрального атома. Это взаимодействие, определяет укорочение и высокую прочность многих связей фтора. Вследствие высокой электроотрицательности фтора связи в таких соединениях сильно полярны. Вследствие низкой энергии диссоциации Рг и относительно высокой энергии связей фтора с многими другими элементами (С—Р, 486 М—Р, 272 Р—Р, 490кДжХ Хмоль " ) молекулярные фториды часто образуются с большим выделением тепла. [c.385]

    Термическая диссоциация-простейший метод, так как уже при нагревании до 1000 К газовый поток существенно обогащается атомным фтором. Однако при таких температурах получаюидиеся соединения вряд ли будут устойчивыми. Правда, можно разграничить зону генерации атомного фтора (горячая зона) и зону химической реакции (холодная зона), но проще прибегнуть к таким неорганическим фторидам, в которых энергия связи элемент-фтор существенно ниже, чем энергия связи между атомами фтора в его молекуле. Это диоксодифторид и дифторид криптона. Последний, например, достаточно нагреть всего лишь до 100 °С, чтобы получить атомный фтор. Что же касается диоксодифторида, получаемого при низкой температуре, то он отдает свой фтор при нагреве (если только это можно назвать нагревом) до температуры порядка - 50 °С. [c.210]

    Длины связей и энергий связей в ковалентных фторидах. Вследствие низкой энергии диссоциации фтора теплоты образования соединений фтора в их стандартных состояниях таковы, что большинство фторидов сильно экзотермично это прямо противоположно той ситуации, которая наблюдается для соединений азота, поскольку связь в N2 очень прочна. Далее, вследствие высокой электроотрицательности фтора в энергию связи значительный вклад вносит ионно-ковалентный резонанс. Кроме того, небольшие атомы, подобные F, могут образовывать более прочные связи вследствие большего перекрывания орбиталей и по этой причине гораздо более вероятно возникновение я-связей. Несомненно, образование фтором кратных связей является одним из возможных факторов, приводящих к укорочению многих связей — например, в BFg и SiF4—по сравнению со связями, образованными другими галогенами. [c.224]

    Существуют две трактовки образования связи в фторидах благородных газов, основанные на методе МО. Лор и Липскомб [4] построили молекулярные орбиты из четырех 25- и 2р-орбит каждого атома фтора и девяти Ы-, 5й- и 5р-орбит атома ксенона. Они показали, что линейная форма ХеРг и форма плоского квадрата Хер4 имеют более низкую энергию, чем другие формы, и что в каждом случае минимум энергии соответствует длине [c.441]

    Выше было показано, что основное состояние фторидов ксенона есть полуйонное. Другими словами, наблюдается значительный перенос заряда от атома ксенона к атому фтора. Поэтому можно ожидать, что низкие потенциалы ионизации благородных газов (К) и высокие потенциалы ионизации галогенов (X) oтвeт tвeнны за образование галогенидов благородных газов (КХп). С этой точки зрения оказался совершенно закономерным тот факт, что фториды криптона, ксенона и радона были открыты первыми. Можно предполагать, что галогениды аргона, хлориды благородных газов и т. д. будут все менее устойчивы, если они вообще способны образоваться. Для образования таких соединений важно, будет ли энергия связи К—X больше энергии связи X—X. [c.502]

    Высокая энергия ионизации кислорода (312,2 ктл1г-атом) и относительно низкое значение энергии связи О—Р исключает возможность образования трехковалентного положительного иона кислорода в соединении со фтором. Высшим фторидом кислорода оказывается ОР. . Как известно, образованные р -электронами валентные связи должны быть направлены под прямым углом друг к другу. Отталкивание атомов фтора несколько увеличивает этот угол в молекуле ОР-з. [c.149]

    Ненасыщаемость ионной сиязи. Образование димерных молекул и кристаллов. Важнейшей особенностью ионной связи является ее ненасыщаемость. Поле, создаваемое ионом, имеет сферическую симметрию, и все находящиеся в этом поле другие ионы испытывают его действие. В результате оказывается возможным образование из двух молекул МеХ димерной молекулы Ме2Х2, как, например, в парах над кристаллами фторида лития. Молекулы димера имеют структуру плоского ромба, близкого к квадрату. Как показывает несложный расчет, образование из двух катионов и двух анионов димерной молекулы Me Xj сопровождается выделением энергии в 1,3 раза большей, чем при образовании двух молекул МеХ. Таким образом, димеризация сопровождается выигрышем энергии, и при низких температурах димерная форма молекулы устойчивее мономерной. Кроме димерных молекул в парах над галогенидами щелочных металлов могут существовать и более высокие полимерные формы, как, например, молекулы Li з F3 в парах над LiF. Подобная полимеризация является как бы промежуточным звеном от молекулы к кристаллу МеХ. [c.166]

    Аналогичным образом в реакциях фосфорсодержащих соединений, например, хлорангидрида 0,0-дифенилтио( )осфорной кислоты, скорость хорошо соответствует значениям р/Са кислород- или серусодержащих нуклеофилов [185] (рис. 5-27), несмотря на то что реакция проводилась в /прет-бутаноле. Смысл кривизны на рис. 5-27 неизвестен, хотя для этой среды с низкой диэлектрической проницаемостью большое значение должно иметь существование ионных пар. Высокая скорость реакции фторид-иона с диизопропил-хлорфосфатом [182] (в этаноле) должна быть связана с большим вкладом кулоновского члена в энергию Р—F- связи. Нуклеофильный порядок по отношению к /г-нитрофенилфосфату [186] определяется главным образом электростатическим отталкиванием из-за большего отрицательного заряда на этом эфире например, пиридин в 30 раз более реакционноспособен, чем гидроксил-ион. [c.242]

    Хотя экстрагирующиеся ковалентные нейтральные галогениды обладают низкой акцепторной способностью и поэтому слабо взаимодействуют с водой, энергия координационной гидратации может вносить некоторый вклад в константу распределения галогенидов. Способность галогенида к донорно-акценторному взаимодействию увеличивается с ростом заряда на металле в галогениде, то есть при прочих равных условиях растет в ряду I, Вг, С1, Р. Падение устойчивости комплексов от фторидов к иодидам для ионов класса а объясняется уменьшением электростатической составляющей связи М—X и сопровождается ослаблением акцепторной способности галогенида, что может приводить к увеличению его константы распределения за счет более слабого взаимодействия с водой. Для ионов класса б упрочнение связи —X от фторидов [c.27]


Смотреть страницы где упоминается термин Фториды с низкой энергией связи: [c.310]    [c.312]    [c.315]    [c.335]    [c.224]    [c.451]    [c.333]    [c.310]    [c.312]    [c.315]    [c.335]    [c.246]    [c.201]    [c.55]    [c.20]   
Смотреть главы в:

Синтезы неорганических соединений -> Фториды с низкой энергией связи

Синтезы неорганических соединений Том 2 -> Фториды с низкой энергией связи




ПОИСК





Смотрите так же термины и статьи:

Связь связь с энергией

Связь энергия Энергия связи

Энергия связи



© 2025 chem21.info Реклама на сайте