Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Орбитальная симметрия

    Начиная с 50-х годов, получило развитие новое направление в разработке методов оценки реакционной способности молекул на основе представлений квантовой теории химической связи. Особенностью этого направления являются определение реакционных центров в молекулах исходя из молекулярной структуры и разработка методов оценки относительной реакционной способности молекул. Так, в методе Хюккеля реакционная способность молекул качественно характеризуется индексами реакционной способности плотностью электронного заряда, индексом свободной валентности, энергией делокализации и др. (см. 37). В методе МО ЛКАО была показана особая роль граничных молекулярных орбиталей. В 60-х годах Вудвордом и Хоффманом было сформулировано правило сохранения орбитальной симметрии в синхронно протекающих элементарных химических актах. Все эти положения получили логическое завершение в методе возмущенных молекулярных орбиталей (метод ВМО). [c.583]


    Согласно Пирсону, правила сохранения орбитальной симметрии для бимолекулярных реакций можно сформулировать в следующем виде. [c.143]

    Приведенный метод анализа элементарного акта оказывается применимым для большого числа различных превращений и впервые сформулирован в виде правил орбитальной симметрии Вудвордом и Гофманом. Основным среди этих правил, изложение которых можно найти в специальных монографиях, является следующее чтобы элементарная реакция проходила с не слишком высоким барьером, она должна быть разрешена по симметрии, т. е. симметрия орбиталей разрываемых связей должна соответствовать симметрии орбиталей образующихся связей. [c.285]

    Весьма перспективный метод исследования механизмов элемен<-тарных химических реакций был предложен Вудвордом и Гоффманом (правила Вудворда — Гоффмана) на основе закона сохранения орбитальной симметрии [108. Сходные идеи высказывали также и другие авторы. Суть метода состоит в рассмотрении возможных энергетических состояний исходных и конечных продуктов реакции на основе теоретико-групповых и квантовомеханических представлений. Такое рассмотрение позволяет отделить те особенности механизма реакции, которые имеют геометрическое или кинематическое происхождение, от чисто динамических особенностей, зависящих от природы взаимодействия между частицами, т. е. от потенциальной энергии. Определение последних особенностей требует решения уравнения Шредингера определение первых возможно на основе предварительного сравнительно простого анализа. [c.65]

    Сохранение орбитальной симметрии при химических реакциях [c.141]

    Промежуточное взаимодействие одного из субстратов с катализатором может существенно понизить энергетический барьер реакции, устраняя запрет по орбитальной симметрии. Например, прямое взаимодействие молекул органических соединений с молекулярным водородом (гидрирование) запрещено по орбитальной симметрии точно так же, как реакция На с СЦ (см, с, 286), Однако На может взаимодействовать с переходными металлами, например с палладием, поскольку запрет не распространяется на взаимодействие с -орбиталями. Образующийся гидрид палладия без труда взаимодействует с органичен скими молекулами с освобождением металлического палладия. На этом основано широкое использование палладия как катализатора гидрирования, [c.309]

    Продемонстрировать, насколько изменяется способность молекул к химическим превращениям в электронно-возбужденном состоянии, можно на примере только что рассмотренной реакции димеризации этилена. Если одна из молекул этилена поглотила квант света, то она тем самым перешла в электронно-возбужденное состояние, т. е. один из ее электронов перешел на разрыхляющую я -орбиталь. При встрече возбужденной и невозбужденной молекул этилена, как и в термической реакции, два электрона с л х-орбитали могут перейти на образующуюся о -орбиталь циклобутана (см. с. 284). При другом способе комбинирования п 1- и зг 2-орбиталей возникает разрыхляющая а -орби-таль, на которую может перейти один электрон (см. с 284). На это нужно затратить определенную энергию. Но эта затрата может быть в значительной мере скомпенсирована за счет перехода возбужденного электрона с тсз-орбитали на связывающую Стз-орбиталь циклобутана (см. с. 284). Таким образом, при взаимодействии невозбужденной и однократно возбужденной молекул этилена может образоваться без существенной затраты энергии однократно возбужденная молекула циклобутана. Возбуждение, следовательно, снимает запрет по орбитальной симметрии. [c.287]


    КИМ энергетическим барьером. Таким образом, электронное возбуждение снимает запрет по орбитальной симметрии. [c.371]

    В заключение заметим, что возможности ускорения многих реакций путем протекания их через активные промежуточные частицы огромны, так как прямые реакции идут невообразимо медленно. Можно полагать, иапример, что энергия активации реакций, протекающих через четырехцентровый циклический активированный комплекс и запрещенных по орбитальной симметрии, по крайней мере, не ниже 150 кДж/моль. Следовательно, при сте-рическом факторе, равном единице, и факторе соударения 10 0 М -с константа скорости при 300 К составит [c.392]

    На примере гетероядерных двухатомных молекул можно проиллюстрировать необходимость в надлежащей орбитальной симметрии для получения максимального перекрывания и взаимодействия, а также сооткошекяе между энергетическим соответствием атомных орбиталей и ионным характером образующейся связи. В качестве метода измерения ионного характера связи можно обсудить дипольные моменты. [c.576]

    Недавно Таль1юзе с сотр. [22] обнаружил существование корреляции между упоминавшимися выше исключениями из правила отсутствия энергии активации ионно-молекулярных реакций и имеющим, место в этом случае запретом по орбитальной симметрии. Анализ экспериментальных данных [c.193]

    С основными положениями этой теории можно познакомиться по монографии Джилкрист Т., С mopp Р. Органические реакции и орбитальная симметрия Пер. с англ. М. Мир, 1976. 351 с. [c.67]

    Таким образом, изложенное следствие из теории групп требует, чтобы орбитальная симметрия исходного вещества сохранялась и в активированном комплексе, и поэтому может быть названо правилом сохранения орбитальной симметрии при химической реакции. В 1965 г, Р. Вудворт и Р. Хоффман сформулировали правила для так называемых синхронных реакций в органической химии, основанные на принципе сохранения орбитальной симметрии на всем пути реакции. Этот принцип устанавливает корреляцию (соответствие) орбитальной симметрии исходных реагентов и продуктов реакции. Правила Вудворта — Хоффмана стали важнейшим обобщением( органической химии [к-34]. Строгий подход к правилам сохранения орбитальной симметрии может быть дан на основе теории групп и теории возмущений, в которой химическая [c.142]

    Следует, указать на два обстоятельства, позволяющие применять для ориентировки правило сохранения орбитальной симметрии. Во-первых, точные волновые функции неизвестны, и приходится использовать вместо них приближенные функции МО ЛКАО. Однако последние правильно отражают наиболее важное здесь свойство точных волновых функций — их симметрию. Во-вторых, для ориентировочных оценок можно в волновой функции (217.1) вместо бесконечной суммы возбужденных состояний ограничиться лишь первым из них, вклад которого наиболее существен. Таким образом, при качественных оценках можно исходить из волновых функций основного и первого возбужденного состояний реагирующей системы. Чтобы энергетический барьер реакции был невысок, первое возбужденное состояние системы должно иметь ту же симметрию, что и основное, н не очень сильно, отличаться от него по энергии. Возбуждение молекулы из основного в первое возбуаденное состояние представляет собой переход электрона с высшей занятой молекулярной орбитали (ВЗМО) на низшую свободную молекулярную орбиталь (НСМО). Поэтому симметрия и разность энергий именно этих двух орбиталей, НСМО и ВЗМО, играют первостепенную роль при качественных оценках возможности протекания реакции через то или иное переходное состояние. ВЗМО и НСМО должны в благоприятном случае иметь одинаковую си (метрию и мало отличаться по энергии. На это впервые указал в 1952 г. Фукуи [43]. [c.143]


Библиография для Орбитальная симметрия: [c.263]    [c.104]    [c.585]   
Смотреть страницы где упоминается термин Орбитальная симметрия: [c.56]    [c.193]    [c.585]    [c.586]    [c.247]    [c.295]    [c.249]    [c.278]    [c.289]    [c.585]    [c.586]    [c.341]    [c.243]    [c.272]    [c.289]    [c.308]   
Электроны в химических реакциях (1985) -- [ c.108 , c.110 , c.115 , c.120 , c.131 , c.139 , c.140 ]




ПОИСК







© 2025 chem21.info Реклама на сайте