Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Кинетика элементарных химических актов

    Каталитические процессы широко распространены в природе и эффективно используются в различных отраслях промышленности, иауки и техники. Так, в химической промышленности посредством гетерогенных каталитических процессов получают десятки миллионов тонн аммиака из азота воздуха и водорода, азотной кислоты путем окисления аммиака, триоксида серы окислением 50г воздухом и др. В нефтехимической промышленности более половины добываемой нефти посредством каталитических процессов крекинга, рифор-минга и т. п. перерабатывается в более ценные продукты — высококачественное моторное топливо, различного вида мономеры для получения полимерных волокон и пластмасс. К многотоннажным каталитическим процессам относятся процессы получения водорода путем конверсии диоксида углерода и метана, синтез спиртов, формальдегида и многие другие. Можно утверждать, что для любой реакции может быть создан катализатор. Теория катализа должна раскрывать закономерности элементарного каталитического акта, зависимость каталитической активности от строения и свойств катализатора и реагирующих молекул и тем самым создать необходимые предпосылки для предсказания строения и свойств катализатора для конкретной реакции, указать пути его получения. К описанию скорости каталитического процесса можно подходить, используя основные положения формальной кинетики и метод переходного состояния. При этом целесообразно сперва выделить общие закономерности катализа, присущие всем видам каталитических процессов, а затем рассмотреть некоторые специфические особенности отдельных групп каталитических процессов. [c.617]


    Итак, сложный химический процесс, состоящий из ряда параллельных и последовательных простых реакций, можно описать системой дифференциальных уравнений, включающих скорости отдельных стадий. Решение системы дифференциальных уравнений — уже проблема математическая. Однако проинтегрирована ли система уравнений и получено ли окончательное решение в элементарных функциях, моделируется или рассчитывается процесс на ЭВМ, необходимо знать значения констант скоростей простых реакций. В формальной кинетике не раскрывается природа констант скоростей реакций. Константы входят как постоянные множители, значения которых определяются из опытных данных. Важнейшей задачей кинетики является раскрытие закономерностей, определяющих зависимость к от строения реагирующих молекул и условий опыта — температуры, среды, катализатора и других факторов. Задача эта решается двумя путями с одной стороны, идет накопление опытного материала о зависимости констант скоростей элементарных реакций к от различных факторов, с другой — делаются попытки создания теории элементарного химического акта и элементарных реакций, которая позволит предсказать значения к простых реакций в зависимости от строения реагирующих молекул и условий опыта. [c.556]

    В дальнейшем теория элементарных реакций развивалась на базе законов классической и квантовой механики (Г. Эйринг, М. Эванс, М. Поляни, 1935). Новое направление в развитии теории кинетики назвали теорией абсолютных скоростей химических реакций. Основное положение теории абсолютных скоростей химических реакций заключается в том, что всякий элементарный химический акт протекает через переходное состояние (активированный комплекс), когда в реагирующей системе исчезают отдельные связи в исходных молекулах и возникают новые связи, характерные для продуктов реакции. В теории абсолютных скоростей решаются две задачи расчет поверхности потенциальной энергии элементарного акта и расчет [c.287]

    На первый взгляд, проблема элементарного химического акта в мономолекулярной реакции может показаться более простой, чем в бимолекулярной реакции. В действительности это далеко не так. Трудность проблемы заключается в том, что большинство мономолекулярных реакций являются сложными реакциями, протекающими через ряд параллельных и последовательных стадий. В настоящее время общепринятой схемой описания мономолекулярной реакции является схема, предложенная Линдеманом (1922). Рассмотрим особенности мономолекулярной химической реакции типа Ai -> Аа, протекающей в газовой фазе при постоянном объеме. Не вдаваясь в подробности молекулярного механизма процессов активации, дезактивации и химического акта, выразим скорости отдельных стадий и всего процесса с помощью метода формальной кинетики. Скорость п процесса активации молекул Ai можно выразить как сумму скоростей бимолекулярных реакций [c.588]


    В формальной кинетике рассматривается зависимость скорости реакции от концентрации реагирующих веществ. Она основана на ряде положений, из которых наиболее важными являются закон химической кинетики, принцип независимости протекания химических реакций в системе и уравнение материального баланса реагентов. Закономерности протекания элементарного химического акта и влияние ИХ на общую скорость процесса в формальной кинетике не рассматриваются. [c.533]

    Кинетика элементарных химических актов [c.11]

    Чтобы лучше понять закономерности кинетики гетерогенно-ката-литических процессов, целесообразно рассмотреть специфические особенности катализа на поверхности раздела фаз. В гомогенном катализе катализатор выступает в молекулярной форме, в гетерогенном катализе катализатор выступает в форме совокупности большого числа молекул или атомов, образующих отдельную фазу. Так, например, в коллоидной частице платины сосредоточено 10 10 атомов, из них менее 1 % расположено на поверхности частицы. В скелетном никеле число атомов в частице радиусом 50 мкм равно 10 , из них только несколько процентов находится на поверхности раздела фаз. Следовательно, в гетерогенном катализаторе только незначительная часть атомов или молекул катализатора может непосредственно взаимодействовать с молекулами реагирующих веществ. С увеличением 5уд возрастает доля молекул или атомов, находящихся на поверхности раздела фаз, возрастает и каталитическая активность. Однако диспергирование катализатора до молекулярной степени дисперсности необязательно приведет к максимальной активности катализатора. Активность при этом может проходить через максимум и снижаться до нуля. Активные центры на поверхности катализатора могут включать несколько атомов или атомных групп. Их каталитическая активность может зависеть от атомов и молекул, находящихся во втором, третьем или п-м слоях атомов и молекул. Тогда переход к молекулярной степени дисперсности приведет к разрушению активного центра и к потере активности катализатора. В гомогенно-каталитических реакциях в растворах молекулы катализатора равномерно распределены по всему объему жидкой фазы. В гетерогенном каталитическом процессе молекулы или атомы, принимающие участие в элементарном каталитическом акте, сосредоточены в очень малом объеме, ограниченном поверхностью катализатора и толщиной слоя раствора (газа) Л, равной расстоянию, на котором начинают существенно проявляться силы притяжения между молекулами реагирующих веществ и поверхностью катализатора. Принимая /г 10 м и 5уд 100 м г"1, рассчитаем объем реакционного пространства, в котором протекает элементарный химический акт  [c.636]

    Если в жидкой или газообразной фазе вместе с инертным веществом присутствует только реагент, то, как легко видеть, основное уравнение материального баланса можно получить из выражения (4.14), заменяя в нем левую часть на —дФ дz. Если речь идет о продукте, то это же самое уравнение применимо и сейчас только при перемене знака перед последним членом в правой части. Присоединяя к этому уравнению основное уравнение, описывающее кинетику элементарного химического акта [уравнение (4.4)1, и несколько изменяя в нем обозначения переменных, определяющих развитие поверхности раздела и величины скоростей на поверхности раздела, можно получить следующую систему дифференциальных уравнений  [c.94]

    Элементарные акты катализа и их константы скорости. Крылов О. В. Сб. Проблемы кинетики элементарных химических реакций . М., Наука, 1973. [c.213]

    Выдающийся вклад в развитии физической химии внес Д. И. Менделеев. Большой интерес представляют его исследования в области газов и растворов. Основание Оствальдом и Вант-Гоффом журнала Zeits hrift fur physi alis he hemie (1887), труды Вант-Гоффа, Аррениуса, Оствальда, Каблукова, Меншуткина, Курнакова и других в области химической термодинамики и кинетики способствовали выделению физической химии в самостоятельную науку. В XX в. революция в физике, связанная с трудами Планка, Эйнштейна, Шре-дингера и др., в области квантовой статистики и квантовой механики атомов и молекул привела к рассмотрению химических процессов на атомно-молекулярном уровне, к развитию учения о реакционной способности, центральным в котором стало исследование элементарного химического акта. Физическая химия успешно развивалась трудами наших ученых, таких, как Д. П. Коновалов (учение о растворах), Н. А. Шилов, И. Н. Семенов (химическая кинетика), А. А. Баландин (катализ), А. М. Теренин (фотохимия), Я. К. Сыркин (строение вещества), А. И. Фрумкин (электрохимия) и многих других, и ряда зарубежных. [c.7]

    Современное состояние теории элементарного химического акта и теории катализа позволяет определить лишь направления, по которым следует вести поиски катализаторов и условий процесса. Как правило, еще требуются большие экспериментальные исследования при создании новых высокоэффективных катализаторов и каталитических процессов. Одной из задач химической кинетики является выяснение возможности представления сложного химического процесса в виде стадий и определение скоростей, констант скоростей и энергий активации отдельных стадий. Эта задача частично решается в разделе химической кинетики, который получил название формальной кинетики химических реакций. [c.532]


    Предметом молекулярной кинетики является изучение и толкование механизма химических реакций. Основные направления развития молекулярной кинетики связаны с изучением закономерностей протекания элементарного акта. Элементарным химическим актом называется единичный акт взаимодействия или превращения частиц (молекул, радикалов, ионов, атомов), в результате которого образуются новые частицы продуктов реакции или промежуточных соединений. В процессе элементарного химического акта происходит изменение расположения ядер атомов и электронной плотности в частицах, в результате чего рвутся старые и возникают новые химические связи. [c.282]

    В действительности, если не отвлекаться от диффузии, адсорбции, десорбции и других физических факторов, порядок реакции определяется не только химической кинетикой, а сочетанием отдельных элементарных химических актов с рядом физических явлений. При этом видимый или суммарный порядок реакции может быть дробным и даже переменным. Более того, зависимость скорости реакции от концентрации одного из реагирующих веществ может и не выражаться в виде показательной функции. Например, зависимость скорости реакции окисления углерода или восстановления двуокиси углерода при низких температурах от концентрации кислорода или двуокиси углерода, получается 1 виде следующей опытной функции ( — с), которую можно выразить формулой [c.88]

    Одна из основных задач химической кинетики и заключается именно в установлении элементарных химических актов, которые определяют действительный путь реакции, так как только знание реального механизма процесса может дать средства для управления им ускорить (например, в химической технологии производства вещества или энергии), замедлить (например, для повышения коррозионной стойкости материала, увеличения срока хранения пищевых продуктов или времени жизни пластмасс), изменить путь (например, для получения нужного продукта из возможной смеси) и т. д. [c.197]

    Эти хорошо известные примеры указывают на то, что электронные и ядерные спины могут играть важную роль в реакционной способности молекул. Но эти примеры не привели еще к созданию спиновой химии. Как раздел науки, спиновая химия сформировалась тогда, когда было установлено, что в ходе элементарных химических актов состояние спинов может изменяться и, что особенно важно, были найдены пути целенаправленного влияния на движение спинов в ходе элементарных химических процессов, были найдены возможности спинового, магнитного контроля химических реакций. Решающую роль сыграли открытие явления химической поляризации электронных и ядерных спинов (1967), открытие влияния внешнего магнитного поля на радикальные реакции (1972) и открытие магнитного изотопного эффекта в радикальных реакциях (1976), Отмеченные спиновые и магнитные эффекты связаны с синглет-триплетны-переходами в спин-коррелированных радикальных парах (РП), индуцированных сверхтонким взаимодействием неспаренных электронов с магнитными ядрами и/или разностью зеемановских частот неспаренных электронов РП. Принципиально то, что эти эффекты возникают благодаря движению спинов в элементарном химическом акте. Таким образом, стало ясно, что в элементарных химических актах есть не только молекулярная динамика, а имеется еще и спиновая динамика. Спиновая динамика играет в элементарных химических актах двоякую роль. С одной стороны, спиновая динамика активно влияет на механизм и кинетику реакции. [c.3]

    Современный подход к выяснению механизмов сложных химических реакций основан на достижениях вычислительной техники. Вычислительные методы позволяют просчитывать различные варианты химических механизмов и выявлять ключевые элементарные реакции, которые необходимо экспериментально изучать. Поэтому экспериментальная химическая кинетика в газовой фазе сместила свои акценты в область исследования элементарных реакций. Здесь же лежат и фундаментальные проблемы химической кинетики, которые связаны с развитием представлений о физике элементарного химического акта. Ниже будут изложены современные экспериментальные методы и теоретические подходы для исследования элементарных реакций. [c.62]

    В классической химической кинетике скорость реакции определяется как число мгновенных актов в единицу времени. Если, однако, конформационная релаксация белков является частью элементарного химического акта, последний не может считаться мгновенным. [c.64]

    А что же, собственно говоря, представляет собой элементарный химический акт Можно было бы сказать, что это процесс перестройки электронной структуры взаимодействующих атомов, и тем самым свести всю проблему реакционной способности и катализа к физике электрона. Однако для того, чтобы в дальнейшем можно было, опираясь на это представление, строить теорию и делать выводы, нужно указать способ измерения процесса электронной перестройки. Дает ли такого рода информацию изучение кинетики химических реакций Здесь придется вернуться к классическому кинетическому эксперименту, общая схема которого слагается из а) изучения зависимости концентрации реагирующих веществ от времени протекания реакции и, если нужно, построения экспериментальных кинетических кривых б) определения тем или иным способом параметров скорости (порядок реакции и константы скорости) реакции и расчета с помощью этих параметров кинетических кривых (если последние совпадают с экспериментальными, значит предполагаемый механизм близок к реальному) в) изучения зависимости константы скорости от температуры (в некоторых случаях и от давления) и расчета основных активационных параметров, т. е. значений энергии и энтропии активации. [c.39]

    Методами химической кинетики обычно измеряется скорость образования соответствующего свободного радикала в условиях, когда дезактивация заведомо происходит за время его жизни относительно распада (или скорость, экстраполированная к этим условиям и отождествляемая со скоростью элементарного химического акта присоединения атома Н к углеводороду). [c.26]

    Значительная роль принадлежит масс-спектрометрии в изучении кинетики и механизмов химических реакций, особенно элементарных химических актов, в том числе ион-молекулярных, процессов возбуждения, ионизации, фрагментации и перестройки молекул. [c.55]

    В начале этого века ученые столкнулись с примерами сложного протекания реакций. В первой трети этого века были открыты цепные реакции (Боденштейн, Семенов, Хиншельвуд). б1мическая кинетика стала превращаться в науку, изучающую механизмы сложных химических реакций. Параллельно развивалась теория элементарного акта на основе аппарата статистической физики. С появлением квантовой химии связан новый этап развития кинетики - квантово-химическая трактовка элементарного химического акта. В 30-х годах была сформулирована теория абсолютных скоростей реакций (Глесстон, Лейдлер, Эйринг). [c.10]

    Химическая поляризация ядер находится на стыке ряда направлений— теории элементарного химического акта, магнитной релаксации, радиоспектроскопии, химической кинетики — и вызывает большой интерес. Он связан главным образом с теми широкими возможностями и перспективами, которые предоставляет ХПЯ для исследования механизмов химических реакций (в частности, химическая поляризация тям<елых ядер). Особый интерес имеют для ХПЯ импульсные режимы протекания реакций — импульсный фотолиз, радиолиз, лазерное облучение. Не меньший интерес представляет исследование ХПЯ в биохимических (в частности, ферментативных) процессах- [c.224]

    Постулат о том, что для осуществления элементарного химического акта реагирующие молекулы (или другие частицы, например атомы, радикалы, ионы) должны столкнуться, на первый взгляд совершенно очевиден. Однако дело обстоит не так просто. Утверждением о необходимости столкновения при элементарном акте полностью отвергается возможность каких-либо дальнодействий при химических реакциях. Между тем возможны случаи, когда задавшись геометрическими размерами молекул (например, определенными по спектроскопическим или электронографическим данным), мы обнаружим, что молекулы, геометрически не сталкиваясь, кинетически в той или иной степени взаимодействуют. Следовательно, прежде чем безоговорочно принять тезис о необходимости столкновения при элементарном акте, следует уточнить те чисто геометрические (в первом приближении) требования, которые предъявляются к понятию столкновения в химической кинетике. [c.113]

    Я. К. Сыркиным проведены обширные исследования в области теории химической связи и строения химических соединений, химической кинетики и реакционной способности. Им изучается физика элементарного химического акта. Выдвинута идея о том, что элемен- [c.58]

    Читателю нетрудно заметить, что использование теории переходного состояния, по сути дела, не связано со специальными опытами по определению активационных параметров реакции, т. е. энтропии и энтальпии активации. Характер экспериментальных исследований остает ся прежним — изучение кинетики реакции при разной температуре среды, вычисление температурного коэффициента и энергии активации, а затем — предэкспоненциального множителя /С(). Но поскольку предэкспонент уравнения Аррениуса непосредственно связан с энтропией активации соотношением (34), то имеется возможность количественно оценить эту новую характеристику системы. Зная ее, можно попытаться составить более детальное представление об элементарных химических актах и геометрии молекул, находящихся на вершине энергетического барьера. В общем случае реакция может идти от исходных веществ к конечным продуктам различными путями, т. е. через различные перевалы (величины энергии активации). Однако реакция, как правило, идет по одному (или небольшему числу) из путей, такому, где энергетические затраты будут наименьшими. Легкость пути и обусловливает правила движения реакции. Но об этом более подробно мы поговорим в разделе Что есть наименьшее . [c.38]

    Появление или отсутствие спектра ЭПР в исследуемом образце дает полезную информацию о строении вещества. При изучении химических процессов на этом основании может быть сделан вывод о радикальном или ионно-радикальном механизме реакции. При изучении строения сложных комплексов или твердых тел, содержащих тяжелые атомы с неспаренными электронами на внутренних оболочках, отсутствие сигнала ЭПР может служить указанием на особенности электронной структуры этих атомов. Применение метода ЭПР позволило обнаружить неспаренные электроны в сложных органических соединениях. При помощи метода ЭПР оказалось возможным провести количественные измерения диффузии свободных радикалов и кинетики элементарных актов с участием радикалов [c.61]

    В настоящее время бурно развиваются исследования по изучению кинетики элементарных процессов, детально изучается поведение участвующих в реакциях атомов, радикалов и комплексов, а также отдельные элементарные акты сложных химических процессов. [c.309]

    И. Н. Семенов. Вычисление химических сил из спектров молекул и элементарных фотохимических актов. (Ч. 1. Статьи химические силы и теоретические основы хим. кинетики.) Усп. химии 1, 19— 51 (1932). [c.210]

    Как указал М. И. Темкин [ЖФХ, 22, 1081 (1948)], величина из уравнения (28) не является энергией активации электрохимической реакции в том смысле, как это понимается в химической кинетике, т. е. не равна высоте энергетического барьера, характеризующего элементарный акт реакции. Поясним это. Отличие электрохимической кинетики от химической заключается в том, что первая рассматривает процессы, скорость которых зависит не только от концентрации и температуры, но и от величины скачка потенциала на поверхности электрода. В химической кинетике энергия активации Wj-, как известно, определяется производной логарифма константы скорости по температуре  [c.619]

    Экспериментальные методы фемтохимии основываются на достижениях фемтосекундной спектроскопии (см. разд. 5.2.9). Можно вьщелить три основных направления этой новой области исследований динамика внутримолекулярных процессов и переходного состояния при химическом превращении кинетика сверхбыстрых химических реакций управление внутримолекулярной динамикой и элементарным химическим актом. Эти три направления кратко описаны в последующих разделах. Приведенные примеры взяты из обзора А. Зевайла. [c.170]

    При высоких температурах процесс реагирования нротекает с большой скоростью, не успевает проникнуть внутрь и сосредоточивается на внешней поверхности. Это дает возможность пренебречь влиянием внутриобъемного реагирования. Но процесс реагирования при более высоких температурах осложняется сильным влиянием диффузии и в связи с этим — скорости н гидродинамики потока газа, а также вторичных реакций. Поэтому при исследовании реакций при высоких температурах большое значение имеет отделение влияния физических факторов, в основном диффузии, от чисто химических. Для того, чтобы наиболее просто и правильно выявить взаимосвязь между диффузией и кинетикой, исследование гетерогенных реакций и в особенности процесса горения углерода и, сопутствующих ему вторичных реакций проводилось в определенных простейших геометрических формах шарик, обтекаемый реагирующим газом (так называемая внешняя задача), канал, стенки которого реагируют с протекающим внутри пего газом (так называемая внутренняя задача), слой из шариков, продуваемый реагирующим газом, и т. д. Применяя для описания процесса дифференциальные уравнения диффузии совместно с граничными условиями, выражающими прямую связь между количеством диффундирующего газа и скоростью реакции на поверхности шарика, канала и т. п. (см. гл. VI), удалось получить хорошее соответствие теории с многочисленными экснериментальными данными [59] и др. В особенности большой вклад в разработку диффузионно-кинетической теории гетерогенного горения внесли Нредводителев и его сотрудники [59], а также Чуханов, Франк-Каменецкий [87], Зельдович и другие советские ученые. Но следует заметить, что математическая обработка экспериментальных данных с помощью диффузионно-кинетической теории горения отнюдь не даст возможности судить об элементарных химических актах (адсорбции, собственно химической реакции и т. д). На основе ее мы можем получить только суммарные константы скорости реакций (включая адсорбцию и внутриобъемное реагирование) и соответствующие величины видимых энергий активаций й суммарного порядка реакции. [c.161]

    Исходя из этого постулата о пространственно-временной независимости элементарных химических актов, Вант-Гофф ) дал известные урав1 ения кинетики [c.24]

    Не имея возможности подробнее останавливаться на этих вопросах,. укажем только на их вероятное отношение к элементарному акту катализа, которое нам необходимо для обоснования закономерностей кинетики по,лупроводникового катализа. Перемещение указанных дефектов по решетке и их образование и исчезновение происходят значительно медленнее перемспгсния электронов и дырок и единичных химических актов на новерхности. Поэтому в каждый данный момент дефектную структуру можно считать постоянной. Часть этих дефектов в условиях катализа можег быть практически неизменной, часть изменяется под в.пиянием изменения температуры, химического состава среды и химических факторов. Не участвуя прямо в каталитическом процессе, такие изменения дефектных структур играют роль нри разрыхлении, старении и переходе катализаторов к стационарной активности. [c.15]

    Развитие ряда иаиравлений физической химии привело к выделению из нее дочерних наук — коллоидной химии, электрохимии, фотохимии и др. Выделившаяся из физической химии важная отрасль — хи- . ичe кaя физика, изучающая связь между строением химических соединений и их реакционной способностью, механизм и кинетику сложных химических процессов, в том числе элементарные акты реакций между свободными радикалами , цепные реакции и т. п.,— выросла к настоящему времени в самостоятельную науку. [c.12]

    ХИМИЧЕСКАЯ ФИЗИКА — наука, пограничная между химией и новыми разделами физики, возникшими в первые тридцать лет 20 в. (квантовая мехс1-иика, электронная теория атомов и молекул). Задачей X. ф. является применение теоретических и экспериментальных методов этой новой физики к химич. проблемам, а именно к вопросам строения и превращения веществ. Основными ра еделами X. ф., установившимися еще в 20—30-х гг., являются 1) Строение электронной оболочки атома (в связи с периодич. законом Д. И. Менделеева). 2) Квантово-мьханич. природа валентности, химич. С1гл и сил межмолекуляр-ного сцепления. 3) Строение молекул, их геометрия, электрические, магнитные и оптич. свойства. 4) Строение и свойства кристаллов, жидкостей, растворов, адсорбционных слоев, сольватация ионов. 5) Динамика молекул, молекулярные сиектры, молекуля )-ные константы, возбуждение атомов и молекул, обмен энергий ири соударении частиц (атомов, ионов, молекул). 6) Современная химич. кинетика — природа элементарных химич. актов, происходящих под действием тепла, квантов света, электронного удара свойства свободных радикалов, возбужденных молекул и других лабильных частиц природа химич. активации и квантово-механич. теория реакционной способности разлпчных соединений в связи с пх строением фотохимия, реакции в разрядах, теория горения и взрывов. [c.318]

    В отличие от газофазных реакций для реакций в жидкой фазе, в частности для реакций переноса заряда, такие процессы долго не удавалось обнаружить. Впервые они наблюдались Айгеном и сотрудниками, применившими разработанные ими релаксационные методы для исследования кинетики гомогенных химических реакций [16] В этих опытах были найдены значения а, стремящиеся к нулю или единице по мере увеличения разности донора и акцептора протонов. Как мы отмечали выше, обнаружение безбарьерного процесса возможно лишь в том случае, когда за элементарным актом следует быстрый релаксационный процесс, конкурирующий с обратной безактивационной реакцией. В жидкостях одним из таких процессов является диффузия продуктов реакции, приводящая к их разделению. Поэтому процессы с а i были интерпретированы Айгеном как реакции, лимитированные диффузией продуктов. Не сомневаясь в справедливости этой интерпретации для некоторых случаев, в частности для не очень сильно эндотермических процессов, мы все же полагаем, что и для гомогенных реакций также могут осуществляться другие механизмы с другими релаксационными процессами (см. гл. 5). [c.75]


Смотреть страницы где упоминается термин Кинетика элементарных химических актов: [c.8]    [c.9]    [c.15]    [c.520]    [c.153]   
Смотреть главы в:

Построение математических моделей химико-технологических объектов -> Кинетика элементарных химических актов


Построение математических моделей химико-технологических объектов (1970) -- [ c.11 ]




ПОИСК





Смотрите так же термины и статьи:

Кинетика химическая

Химические элементарные



© 2025 chem21.info Реклама на сайте