Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Углеводы катаболизм

    Гликогенные и кетогенные аминокислоты. К гликогенным аминокислотам относятся те аминокислоты, при катаболизме которых образуются непосредственные предшественники глюкозы, вовлекаемые в процесс глюконеогенеза — пируват, оксалоацетат, фосфоеноилпируват (таких аминокислот 14), либо в жиры (кетогенные, одна аминокислота), либо и в углеводы, и в жиры (гликогенные и кетогенные, 5 аминокислот). Таким образом, классификация [c.378]


    Для завершения окисления жирных кислот ацетильные остатки молекулы ацетил-СоА, образовавшиеся в результате реакций р-окисления, должны быть окислены до двуокиси углерода и воды [14]. Цикл трикарбоновых кислот, в ходе которого осуществляется это окисление, является жизненно важной частью метаболизма почти всех аэробных организмов. Центральное место этого цикла в метаболизме обусловлено еще и тем, что ацетил-СоА образуется также в процессах катаболизма углеводов и некоторых аминокислот. [c.317]

    Следует отметить, что, если первый этап аэробного окисления углеводов — гликолиз является специфическим процессом катаболизма глюкозы, то два последующие — окислительное декарбоксилирование пирувата и ЦТК относятся к общим путям катаболизма (ОПК). После образования пирувата (Сз фрагмент) и ацетил-КоА (С2-фрагмент), образующихся при распаде не только глюкозы, но и липидов и аминокислот, пути окисления этих веществ до конечных продуктов происходят одинаково по механизму реакций ОПК. [c.261]

    Яблочная и лимонная кислоты принимают участие в цикле трикарбоновых кислот, называемом также циклом лимонной кислоты, или циклом Кребса, — универсальном этапе окислительного катаболизма углеводов, липидов и других соединений в присутствии кислорода. В ходе цикла трикарбоновых кислот происходит, кроме того, образование предшественников аминокислот. [c.260]

    Г. обнаружены в вирусах и фагах, микроорганизмах, грибах, растениях, в клетках и тканях животных. Их главная ф-ция-участие в катаболизме сложных углеводов они играют также важную роль в их биосинтезе (напр., крахмала, углеводных цепей гликопротеинов). Липидозы и др. болезни накопления обусловлены наследств, недостатком определенных Г. [c.576]

    В аэробной стадии катаболизма углеводов различают следующие главные этапы  [c.572]

    В ходе метаболизма углеводов энергия запасается в виде химических молекул, которые синтезируются прежде всего как молекулы моносахаридов, а затем в ходе распада (катаболизма) этих молекул энергия высвобождается [c.77]

    Энергию, необходимую для жизнедеятельности, клетки древесины и других растительных тканей получают при катаболизме органических соединений в результате их окисления в процессе клеточного дыхания. Главными субстратами окисления в растениях являются углеводы, в ходе окисления которых к тому же образуются промежуточные соединения, используемые для биосинтеза остальных классов соединений. [c.338]

    Было высказано предположение, что концентрация ионов Mg +, так же как и концентрация ионов Н+, остается в состоянии подвижного равновесия с сывороткой крови . Тем не менее, по-видимому, возможны ситуации, когда происходят по крайней мере временные изменения концентрации свободных ионов Mg + и свободных ионов Н+б. При быстром катаболизме углеводов гликолиз может привести к закислению мышечных клеток, причем значение pH может падать от 7,3 до 6,3. Падение pH вызывает значительное снижение степени связывания Mg + с такими молекулами, как АТР, и временное увеличение концентрации ионов Mg +. Подобным образом высвобождение дифосфоглицерата из комплекса с гемоглобином при оксигенацни приводит к снижению концентрации свободного Mg +, так как последний связывается с дифосфоглицератом . Эти изменения концентрации свободного Mg + могут иметь большое значение в метаболической регуляции .  [c.130]


    Необходимо отметить, что ацетил-КоА образуется и при катаболизме жиров, I. e. это соединение объединяет метаболические пути углеводов н жиров. Ацетил, переносимый коферментом А, как в клетках животных, так и растений, далее используется в биосинтезе или окисляется до Oi и HjO. [c.340]

    При окислении углеводов по пути Энтнера — Дудорова (гл. 9, разд. Д,4) 2-кето-3-дезокси-6 фосфоглюконат расщепляется с образованием пирувата и глицеральдегид-З-фосфата. Состоящая из восьми атомов углерода сахарная кислота КОО клеточных стенок бактерий (рис. 5-10) расщепляется другой альдолазой. В результате катаболических превращений оксипролина образуется 4-окси-2-кетоглутарат, который расщепляется до пирувата и глиоксилата. Альдолаза, участвующая в катаболизме дезоксинуклеотидов, расщепляет 2-дезоксирибозо-5-фосфат до ацетальдегида и глицеральдегид-З-фосфата. [c.166]

    Он первым постулировал значение данного цикла для полного сгорания пирувата, главным источником которого является гликолитическое превращение углеводов. В дальнейшем было показано, что цикл трикарбоновых кислот является тем центром, в котором сходятся практически все метаболические пути. Таким образом, цикл Кребса—общий конечный путь окисления ацетильных групп (в виде ацетил-КоА), в которые превращается в процессе катаболизма большая часть органических молекул, играющих роль клеточного топлива углеводов, жирных кислот и аминокислот. [c.345]

    Характерной особенностью белкового обмена является его чрезвычайная разветвленность. Достаточно указать, что в обмене 20 аминокислот, входящих в состав белковых молекул, в организме животных участвуют сотни промежуточных метаболитов, тесно связанных с обменом углеводов и липидов. Число ферментов, катализирующих химические реакции азотистого обмена, также исчисляется сотнями. Следует добавить, что блокирование одного какого-либо специфического пути обмена даже одной аминокислоты, обычно наблюдаемое при врожденных пороках обмена, может привести к образованию совершенно неизвестных продуктов обмена, так как возникают условия для неспецифических превращений всех предшествующих компонентов в данной цепи реакций. Отсюда становятся понятными трудности интерпретации данных о регуляции процессов азотистого обмена в норме и особенно при патологии. Этими обстоятельствами можно объяснить исключительную перспективность изучения обмена белков с целью выяснения особенностей их катаболизма и синтеза, овладение тонкими молекулярными механизмами которых, несомненно, даст в руки исследователя ключ к пониманию развития и течения патологических процессов и соответственно к целенаправленному воздействию на многие процессы жизни. [c.410]

    Как было указано, обмен веществ в организме человека протекает не хаотично он интегрирован и тонко настроен. Все превращения органических веществ, процессы анаболизма и катаболизма тесно связаны друг с другом. В частности, процессы синтеза и распада взаимосвязаны, координированы и регулируются нейрогормональными механизмами, придающими химическим процессам нужное направление. В организме человека, как и в живой природе вообще, не существует самостоятельного обмена белков, жиров, углеводов и нуклеиновых кислот. Все превращения объединены в целостный процесс метаболизма, подчиняющийся диалектическим закономерностям взаимозависимости и взаимообусловленности, допускающий также взаимопревращения между отдельными классами органических веществ. Подобные взаимопревращения диктуются физиологическими потребностями организма, а также целесообразностью замены одних классов органических веществ другими в условиях блокирования какого-либо процесса при патологии. [c.545]

    Последующие исследования подтвердили высказанное Г. Кребсом положение о центральной роли ЦТК в распаде веществ в организме до конечных продуктов Oj и HjO. Наряду с окислительным декарбоксилированием пирувата этот процесс относится к общим путям катаболизма и является конечным путем окислительного катаболизма всех видов биомолекул (углеводы, липиды, аминокислоты), которые в аэробных условиях либо превращаются в ацетил-КоА, либо в промежуточные соединения ЦТК. Следовательно, ЦТК вьшолняет функции единого интегрального механизма, взаимосвязи и взаимозависимости процессов клеточного метаболизма (рис. 19.2). [c.264]

    В этой главе мы рассмотрим открытый Кребсом цикл лимонной кислоты, называемый также циклом трикарбоновых кислот. Это общий конечный путь для окисления ацетильных групп, в которые превращается в процессе катаболизма большая часть органических молекул, играющих роль клеточного топлива-углеводов, жирных кислот и аминокислот. [c.478]

    Рассмотрим теперь катаболизм более подробно. Ферментативное расшепление тех главных питательных веществ, которые служат клетке источником энергии, а именно углеводов, жиров и белков совершается постепенно-через ряд последовательных ферментативных реакций. В аэробном катаболизме различают три главные стадии (рис. 13-6). На стадии [c.380]

    Одновременно Т.к.ц-метаболич. путь окисления до СО и HjO аминокислот, жирных к-т и углеводов, к-рые вступают в этот цикл на разл. его стадиях (схема 2). Кроме того, образующиеся ди- и трикарбоновые к-ты м.б. исходными субстратами в биосинтезе мн. соед. (схема 3). Так, оксалоацетат-субстрат в глюконеогенезе-, сукцинил-КоА-промежут. продукт в синтезе порфиринов, ацетил-КоА - в синтезе жирных к-т, стероидов, ацетилхолина. Образующийся в цикле СО2 используется в р-циях карбоксилирования в синтезе жирных к-т, орнитиновом цикле и др. Участие Т. к. ц. в биосинтезе и катаболизме мн. в-в обусловливает его важное место в обмене в-в. [c.634]


    Теперь, познакомившись с некоторыми основными законами, которые регулируют обмен энергии в химических системах, мы можем обратиться к рассмотрению энергетического цикла в клетках. Для гетеротрофных клеток источником свободной энергии, получаемой в химической форме, служит процесс расщепления, или катаболизм, пищевых молекул (в основном углеводов и жиров). Эту энергию клетки используют в следующих целях 1) для синтеза биомолекул из молекул-предшественников небольшого размера 2) для выполнения механической работы, например мышечного сокращения, 3) для переноса веществ через мембраны против градиента концентрации и 4) для обеспечения точной передачи информации. Главным связующим звеном между клеточными реакциями, идущими с выделением и с потреблением энергии, служит аденозинтрифосфат (АТР рис. 14-2). При расщеплении высокоэнергетического клеточного топлива часть содержащейся в этом топливе сво- [c.413]

    Скорости главных катаболических реакций, обеспечивающих расщепление глюкозы и извлечение химической энергии в форме АТР, в каждый данный момент регулируются в соответствии с потребностями клетки в АТР независимо от того, как будет затем этот АТР использоваться-в биосинтетических реакциях, для активного переноса веществ или для механической работы в сократительных структурах. Поскольку продукты расщепления глюкозы играют важную роль и в качестве предшественников, и как промежуточные продукты других метаболических процессов, регуляторные ферменты катаболизма углеводов распознают также соответствующие сигналы других метаболических путей и отвечают на эти сигналы. Теперь мы [c.461]

    Субстратами орг. обмена являются в-ва, поступающие из внеш. среды, и в-ва внутр. происхождения. В процессе О.в. часть конечных продуктов выводится во внеш. среду, др. часть используется организмом. Конечные продукты орг. обмена в тканях, способные накапливаться или расходоваться в зависимости от условий существования организма (напр., триацилглицерины, гликоген, крахмал, проламины), наз. запасными, или резервными, в-вами. Если скорость поглощения субстратов превосходит скорость выведения конечных продуктов, то анаболизм преобладает над катаболизмом и организм развивается или накапливает резервные в-ва. При равенстве этих скоростей рост организма прекращается и О.в. переходит в состояние, близкое к стационарному. В случае превышения скорости выведения конечных продуктов над скоростью потребления после истощения запаса резервных в-в организм обычно погибает. Последнее наблюдается при искусств, ограничении потребления внеш. субстратов (напр., алиментарная дистрофия при голодании животных, самосбраживание дрожжей в условиях дефицита углеводов) или в естеств. условиях (напр., при интенсивном дыхании плодов и семян растений). [c.310]

    Скорость окислительных стадий цикла определяется скоростью реокисления NADH в цепи переноса электронов. При некоторых условиях ее может лимитировать скорость поступления Ог. Однако в аэробных организмах она обычно определяется концентрацией ADP и (или) Р , доступных для превращения в АТР в процессе окислительного фосфорилирования (гл. 10). Если в ходе катаболизма образуется больше АТР, чем это необходимо для энергетических потребностей клетки, концентрация ADP падает до низкого уровня, выключая, таким образом, процесс фосфорилирования. Одновременно АТР, присутствующий в высоких концентрациях, действуя по принципу обратной связи, ингибирует процессы катаболизма углеводов и жиров. Это ингибирование осуществляется во многих пунктах метаболизма, часть которых показана на рис 9-3. Важным участком, на котором осуществляется такое ингибирование, является пируватдегидрогеназный комплекс (гл 8, разд К2) [19]. Другим таким участком сложит цитратсинтетаза— фермент, катализирующий первую реакцию цикла трикарбоновых кислот [20]. Правда, существуют сомнения относительно того, имеет ли такое ингибирование физиологическое значение [16]. Уровень фосфорилирования аденилатной системы может регулировать работу цикла еще и другим способом, связанным с потребностью в GDP на стадии е цикла (рис. 9-2). В митохондриях GTP в основном используется для превращения АМР в ADP. Следовательно, образование GDP зависит от АМР — соединения, которое образуется в митохондриях при использовании АТР для активации жирных кислот [уравнение (9-1)]. [c.324]

    Основной путь катаболизма углеводов включает в себя гликолиз моносахаридов - О-глюкозы и В-фруктозы, источниками которых в растениях служат сахароза и крахмал. Гликолизом называют расщепление молекулы гексозы на два Сз-фрагмента (схема 11.26). В итоге образуются две молекулы пировиноградной кислоты, а выделяющаяся энергия запасается в двух молекулах АТФ, синтез которых произошел в результате так называемого субстратного фосфорилирования молекул АДФ. Для регенерирования НАД, участвующего в гликолизе, молекулы его восстановленной формы должны отдать полученные от субстрата окисления электрон и протон. В роли их акцептора в обычных для растений аэробных условиях выступает молекулярный кислород. Выделяющаяся при переносе электронов от НАДН к О2 энергия также используется для фосфорилирования АДФ, которое называют окислительным фосфорилирова-нием. Это дает дополнительно еще 4 молекулы АТФ. [c.338]

    Важную роль в катаболизме углеводов играет пентозофосфатный цикл, или окислительный пентозофосфатный путь. Он состоит из двух частей (рис. 11.10). В первой части цикла происходит окислительное декарбоксилирование глюкозо-6-фосфата. Образовавшийся рибулозо-5-фосфат изомеризуется, и во второй части пенто-зофосфатного цикла происходит ряд взаимопревращений пентозофосфатов, в ходе которых в качестве промежуточных соединений получаются фосфаты моносахаридов с [c.340]

    В регуляции катаболизма репрессорами могут быть исходные или промежуточные продукты. При помощи этого механизма регуляции бактерии Е. соИ из двух источников углерода — глюкозы и сорбозы вначале используют легко катаболизируе-мую глюкозу. Этот углевод в данном случае является репрессором ферментов катаболизма сорбозы. После использования глюкозы репрессия заканчивается и новый субстрат — сорбоза индуцирует синтез новых ферментов. Явление, когда культура микроорганизмов использует несколько различных субстратов среды не одновременно, а постепенно один за другим, называют диауксией. [c.48]

    О-Ацильные производные моносахаридов. При замещении атомов водорода гидроксильных групп углеводов остатками кислот получаются вещества типа сложных эфиров. Особое значение в процессах метаболизма в организме имеют моно- и дифосфорнокислые эфиры моносахаридов как промежуточные метаболиты катаболизма, биосинтеза и взаимопревращения углеводов. При образовании фосфорных эфиров (донор фосфорильной группы АТФ) резко возрастает реакционная способность моносахаридов, их биохимическая активность. [c.230]

    Промежуточный метаболизм складывается из двух фаз-катаболизма и анаболизма. Катаболизм-это фаза, в которой происходит расщепление сложных органических молекул до более простых конечных продуктов. Углеводы, жиры и белки, поступившие извне с пищей или присутствующие в самой клетке в качестве запасных веществ, распадаются в серии последовательных реакций до таких соединений, как молочная кислота, СО 2 и аммиак. Катаболические процессы сопровождаются высвобождением свободной энергии, заключенной в сложной структуре больших органических молекул. На определенных этапах соответствующих катаболических путей значительная часть свободной энергии запасается благодаря сопряженным ферментативным реакциям в форме высокоэнергетического соединения - аденозинтрифосфата (АТР). Часть ее запасается также в богатых энергией водородных атомах кофермента никотинамид адениндинуклеотидфосфата, находящегося в [c.379]

    Катаболизм — фаза метаболизма, включающая ферментивное расщепление белков, липидов, углеводов и других веществ и сопрово)цдаю-щаяся выделением энергии. [c.141]

    В клетках продуцента образуется а-метилбутирил-КоА из углеводов на пути синтеза изолейцина или используется внеклеточный изолейцин. Катаболизм изолейцина до а-МБ-КоА осуществляется трансаминазой и дегидрогеназой кетокислот. [c.244]

    Все эти проведенные in vitro исследования показывают, что фотосинтез углеводов в растениях является сложным процессом, в котором, кроме системы специфических сенсибилизаторов фотохимических реакций, участвуют также и ферментативные системы катаболизма углеводов в процессе дыхания. [c.262]

    Начало биохимическому подходу к изучению обмена веществ было положено исследованиями катаболизма и в особенности дыхания и брожения. При этом биохимики условились при изучении окислительно-восстановительных потенциалов обозначать окислительный потенциал как - -ие, тогда как физикохимики обычно обозначают окислительный потенциал как —ае. Подобным же образом, в термодинамике биохимиков интересует теплота сгорания тех или иных соединений и в качестве исходных продуктов они рассматривают продукты полного сгорания (СО2 и Н2О). Для физикохими-ков же исходным состоянием является состояние элементов при стандартных условиях. Таким образом, макроэргические соединения обладают сравнительно большой теплотой сгорания, но сравнительно малой теплотой образования. В этом смысле жиры и углеводы— это макроэргические соединения. Однако Липман использовал свой термин только применительно к тем соединениям, при гидролизе которых происходит значительное изменение свободной энергии. Поскольку, как оказалось, современные методы дают более низкие значения для свободной энергии гидролиза, в настоящее время наибольшее внимание уделяется ангидридосоединениям. Проблема анаболизма в значительной степени является проблемок создания ангидридных связей в водном окружении клетки. Процесс окислительного фосфорилирования, при котором из АДФ и неорганического фосфата (Фн) образуется АТФ, рассматривается в гл. 5, но здесь мы хотим обратить внимание читателя на возможное значение окислительного фосфорилирования в липидных мембранах митохондрий. [c.89]

    Клеточный метаболизм основан на принципе максимальной экономии. Общая скорость катаболизма, обеспечивающего клетку энергией, определяется не просто наличием или концентрацией клеточного топлива она обусловлена потребностью клетки в энергии в форме АТР и NADPH. Клетка потребляет в каждый данный момент как раз такое количество питательных веществ, какое позволяет ей удовлетворять свои энергетические нужды. Точно так же обусловлена потребностями данного момента скорость синтеза строительных блоков и макромолекул клетки. В растущих клетках, например, все 20 видов аминокислот синтезируются как раз с такой скоростью и в таких соотношениях, какие необходимы для того, чтобы обеспечить сборку новых белков, требующихся в данный момент. Таким образом, ни одна из 20 аминокислот не вырабатывается в избытке и не остается без использования. У многих животных и растений в организме откладываются запасные питательные вещества, способные служить источником энергии и углерода. Такими запасными питательными веществами являются, в частности, жиры и углеводы. [c.388]

    Важная роль пирувата в катаболизме углеводов определяется тем, что это соединение лежит в точке пересечения различных катаболических путей. При аэробных условиях в животных тканях продуктом гликолиза является пируват, а NADH, образовавшийся в ходе окисления глицеральдегид-З-фосфата, реокис-ляется (т. е. снова превращается в NAD ) за счет молекулярного кислорода (гл. 17). Иначе обстоит дело в анаэробных усло- [c.454]


Смотреть страницы где упоминается термин Углеводы катаболизм: [c.247]    [c.136]    [c.311]    [c.85]    [c.545]    [c.270]    [c.338]    [c.546]    [c.270]    [c.468]    [c.468]    [c.239]    [c.269]    [c.629]    [c.247]    [c.385]   
Общая микробиология (1987) -- [ c.274 ]




ПОИСК







© 2025 chem21.info Реклама на сайте