Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Теплообменники, коррозия при

    Ультразвуковые установки применяют как для чистки, так и для предотвращения отложений накипи на поверхности кожухотрубчатых теплообменников. Химические способы очистки позволяют значительно сократить трудоемкость ремонтных работ и их сроки, так как при этом не требуется разборки аппаратуры. Этот способ эффективен для очистки теплообменной аппаратуры от некоторых отложений. Так, накипь в теплообменниках можно удалить промывкой трубок соляной кислотой с добавлением ингибитора коррозии. Для удаления коксосмолис- [c.223]


    Блок стабилизации. В блоке стабилизации подвергаются воздействию коррозии теплообменники, стабилизационная колонна,, конденсатор-холодильник и связанные с ними трубопроводы. Конденсаторы-холодильники на установках гидроочистки старого типа чаще прочего оборудования выходят из строя, более агрессивным веществом является оборотная вода. В последующих типах установок водяные конденсаторы-холодильники заменены на воздушные, [c.149]

    Исходя из коррозионной способности среды, насыщенный раствор МЭА направляют в трубное, а регенерированный раствор — в межтрубное пространство теплообменника. Аппарат выполняется в соответствии с требованиями ГОСТ 14246—69, категория исполнения Б. При таком материальном оформлении аппарата можно применять трубки трубного пучка диаметром 20 мм, располагая их по квадрату. Для уменьшения коррозии принимают относительно невысокие скорости потока в трубном пространстве (0,5—0,8 м/с), чтобы потери напора были оптимальны даже при четырехходовой но трубному пространству конструкции и сдвоенном расположении аппаратов. При этом длина трубок трубного пучка составляет 6000 мм. Диаметр аппарата выбирают при линейных скоростях потоков в трубном пространстве 0,5—0,8 м/с, а в межтрубном — не ниже 0,3 м/с. Площадь поверхности теплопередачи рассчитывают на основании практических значений коэффициента теплопередачи — для рассмотренных условий 290—350 Вт/(м -°С). [c.89]

    В целях предотвращения разложения раствора МЭА температура греющего пара не должна превышать 180 °С. Для нормальной экс- плуатации блока очистки предельное насыщение раствора МЭА сероводородом не должно превышать 0,4 моль на 1 моль или 22 м сероводорода (при нормальных условиях) на 1 м раствора МЭА. Нарушение данного требования приведет к усилению сероводородной коррозии аппаратуры и трубопроводов узла очистки газов, а в ряде случаев будет способствовать растрескиванию металла десорбера, теплообменника и рибойлера. [c.126]

    Отложения в теплообменных аппаратах могут быть двух видов твердые — окалина, накипь, продукты коррозии металла, кокс и др. пористые — рыхлый кокс, тина, грязь, коксовая пыль, сажа и др. Эти отложения снижают коэффициент теплопередачи и, как следствие, температуру нагрева сырья на выходе из теплообменника. Чтобы поддержать коэффициент теплопередачи на должном уровне, загрязненный пучок теплообменных труб периодически очищают от отложений. Обычно для однотипных теплообменников используют запасной пучок теплообменных труб, заменяя им загрязненный. [c.271]

    Использовали следующий режим термической чистки теплообменника его нагрев и выдержка при 150 °С. Основные коррозионные повреждения наблюдались на центральной трубе крышки теплообменника. Коррозия имела точечно-язвенный характер. Наибольшее количество поражений — в области сварного шва у основания центральной трубы. На крышке теплообменника наблюдались отдельные язвы площадью 1—2 см с глубиной поражений 0,1—0,2 мм, на сварном шве пробоотборника — трещина длиной 5 см. [c.43]


    Электросварка применяется в тех случаях, когда в теплообменнике коррозия отсутствует и требуется гарантированная гер метичность в целях исключения возможности соприкосновения теплоносителя с реакционной средой. Иногда электросварку применяют для закрепления труб в решетке в том случае, когда в теплообменнике имеется высокая температура (500° С) и необходимо применять утолщенные трубы. [c.119]

    Наиболее ощутимые выгоды от улучшения качества речной воды будут при использовании ее для нужд промышленного и хозяйственно-питьевого водоснабжения. Применение для этих целей воды, содержащей компоненты, вносимые со сточными водами, может вызвать снижение теплоотдачи в теплообменниках, коррозию трубопроводов и технологического оборудования, снижение производительности фильтрующего оборудования, необходимость дополнительной обработки воды для устранения нежелательных запахов, привкусов и т. д. [c.197]

    Смесь газов и паров по выходе из сепаратора 9 (при высоком давлении) охлаждается в соединенных последовательно теплообменниках 12 и 16. Перед входом в теплообменник 12 в данную смесь впрыскиваются конденсационная вода и раствор ингибитора коррозии, поскольку участок от теплообменника 12 и до конденсатора-холодильника 15 включительно наиболее подвержен коррозии кислым сульфитом аммония. Предпочтительно, чтобы на этом участке при температуре охлаждающегося потока ниже 177 С скорость движения смеси не превышала 9 м/с. Поступающая из водяного конденсатора-холодильника 13 трехфазная смесь разделяется при давлении 3,7 МПа и температуре около 43 °С в низкотемпературном (холодном) сепараторе 14. Отстоенный от воды углеводородный конденсат, состоящий преимущественно из бензиновых и легких керосиновых фракций, по выходе из сепаратора 14 нагревается в теплообменнике 16 и поступает в стабилизационную колонну 17. [c.52]

    Для борьбы с коррозией теплообменников внутреннюю или наружную поверхность металлических труб и внутреннюю поверхность кожухов облицовывают стеклом применяют плакировку, сочетающую механическую прочность одного металла с коррозионной стойкостью другого. Так, тонкий слой нержавеющей сталп прокаткой соединяют с листом обычной углеродистой стали. Применяют иногда электролитические или химические покрытия, образующие противокоррозионную пленку на конструкционных материалах. При случае несовместимости прокачиваемой жидкости с материа.1 ами труб используют биметаллические трубы, например из никелевого сплава с одной стороны и алюминиевого — с другой. [c.270]

    Реакторный блок. В реакторном блоке имеют-место все рассмотренные типы коррозии металлов. Водородной и высокотемпературной сероводородной коррозии подвергаются змеевики трубчатых печей, реактор, сырьевые теплообменники и горячие участки трубопроводов. Низкотемпературная коррозия наблюдается в продуктовых холодильниках. [c.148]

    Блок очистки газов от сероводорода. Наибольшей коррозии подвергаются конденсатор-холодильник отгонной колонны, теплообменники, трубки кипятильника (рибойлера) отгонной колонны. В меньшей степени корродируют холодильники раствора МЭА. Имелись отдельные случаи растрескивания корпуса в нижней части отгонной колонны. Абсорберы практически не корродируют. [c.150]

    Установка ABO взамен водяных холодильников на АВ и АВТ не вызывает трудностей, а объем работы по подготовке площади невелик. Срок службы ABO намного больше, чем аппаратов водяного охлаждения, и приводы вентиляторов в воздушной атмосфере работают почти без повреждений. В аппаратах с водяным охлаждением трубы подвергаются коррозии со стороны технологического потока и со стороны воды. Из-за отложений накипи и загрязнений снижается коэффициент теплопередачи поэтому аппараты нужно часто останавливать для чистки и ремонта. Кроме того, при этом приходится создавать резервные поверхности теплообмена. В ABO коррозия и загрязнения ребристой поверхности труб со стороны воздуха незначительны. Ориентировочно соотношение затрат на обслуживание и ремонт водяных и воздушных теплообменников составляет 4 1. Поскольку воздух почти не вызывает коррозии, трубы для ABO можно изготавливать из более дешевых материалов, чем для кожухотрубчатых теплообменников. Наружная поверхность труб в ABO не нуждается в частой чистке. Недостатком ABO является сильный шум, создаваемый работающими вентиляторами. [c.177]

    Теплообменники такого типа помещаются в аппараты, которые при работе заполняются перерабатываемой жидкой массой. Они с успехом применяются главным образом в среде, вызывающей коррозию аппарата. При этом сам рабочий сосуд имеет с внутренней стороны антикоррозийное покрытие, которое является плохим проводником тепла. Таким покрытием является, например, кислотоупорная облицовка или пластмассы с низким ко-коэффициентом теплопроводности X. В этих случаях передача тепла теплопроводностью через стенку сосуда затруднительна. [c.231]

    С помощью этого метода концентрируют сульфатные щелока, радиоактивные сточные воды, солевые растворы. Чтобы предотвратить отложение солей на теплообменных поверхностях, уменьшить коррозию оборудования, при выпаривании солевых стоков иногда вводят в стоки жидкий гидрофобный теплоноситель (например, парафины, минеральные масла, силиконы). Уменьшить расход теплоносителя на выпаривание можно, используя установки мгновенного испарения (УМИ). В этом случае вода нагревается в выносных теплообменниках до температуры кипения, затем она поступает в камеры испарения под более высоким давлением. Испарение происходит с поверхности воды и с поверхности капель, образующихся в результате диспергирования жидкости. [c.490]


    Отбор светлых составлял 44,7% керосина 10,5% и дизельных топлив 22,7%. Для предотвращения сероводородной коррозии в шлемовые линии подается газообразный аммиак. На установке применены кожухотрубчатые теплообменники с корпусом диаметром до 1200 мм и поверхностью до 600 Печи двухскатные, работающие на комбинированном топливе (газ — мазут), их тепловая мощность 32 м.т1н. ккал/ч. В конвекционных камерах печей установлены секции котла-утилизатора для производства водяного пара давлением 6 ат, имеются также пароперегреватель и воздухоподогреватель. Колонны оборудованы тарелками с З-образными колпачками. Технико-экономические показатели установки следующие  [c.316]

    Повышенную опасность представляют собой теплообменные аппараты, в которых при высоких температурах, давлениях или вакууме охлаждаются или нагреваются парогазовые и жидкие смеси со взрывоопасными свойствами. Для большинства теплообменных -аппаратов наибольшую опасность при их эксплуатации представляют нарушения герметичности, резкие изменения температур и давления, перегрев парогазовой смеси, ослабление механической прочности труб и корпусов аппаратов, вызванное различными отложениями на внутренней поверхности труб, змеевиков, корпуса теплообменника, а также коррозией, эрозией и др. [c.132]

    Коррозия трубок — одна из основных причин разгерметизации теплообменников и попадания взрывоопасных продуктов в канализацию условно чистых стоков. [c.254]

    Теплообменники труба в трубе применяют для высоковязких и загрязненных мазутов и гудронов. Хорошо противостоят сероводородной и хлористоводородной коррозии в конденсаторах трубки из адмиралтейского сплава (70% Си, 1% 8п, 29% 2п). Погружные конденсаторы из чугунных труб в этих условиях работают менее 2 лет, пучковые же конденсаторы из этого сплава работают более. 5 лет. Решетки и крышки пучков в последнем случае были из [c.269]

    Через некоторое время обнаружили разрушение алюминиевых трубок над нижней трубной решеткой, вызванное их коррозией от воздействия щелочи, попавше " в теплообменник. [c.74]

    В системе его водоснабжения вода подавалась на предприятия без всякой подготовки. В отдельные периоды года, особенно весной, почти вся теплообменная аппаратура забивалась посторонними включениями и остатками биологических обрастаний, что приводило к продолжительным нарушениям технологического режима в системах ректификации и абсорбции и обильному выбросу газов и легковоспламеняющихся жидкостей в атмосферу. Неочищенная промышленная вода вызывала также коррозию теплообменников. [c.246]

    Если коррозия протекает с обеих сторон трубной решетки, то следуют две прибавки с на коррозию. При относительно тонких решетках и значительном давлении в трубном пространстве в результате прогиба трубных решеток под действием давления часть труб, расположенных ближе к центру, может работать на продольный изгиб. Если в этих случаях отсутствуют поперечные перегородки, укрепляющие трубный пучок, а также если трубный пучок вследствие коррозии быстро выходит из строя, то не следует принимать во внимание укрепляющее действие труб, а трубную решетку жесткого теплообменника следует рассчитывать по формуле, приведенной для и-образных теплообменников, у которых укрепляющее действие труб полностью отсутствует. [c.99]

    Большая работа проводится на аппаратах колонного типа. Колпачковые и желобчатые тарелки заменяются новыми клапанными из нержавеющей стали, что позволяет исключить их чистку и тем самым увеличить межремонтный пробег. Погружные конденсаторы-холодильники заменяют аппаратами воздушного охлаждения, теплообменники с плавающими головками — теплообменниками с У-образными пучками и т. д. Устанавливают бессальниковые и центробежные насосы взамен поршневых, на ряде насосов внедряют торцовые уплотнения из сили-цированного графита. На установках термокрекинга взамен насосов КВН 55X120 и 55x180 устанавливают насосы НСД — 200x100, заменяют газомоторные компрессоры винтовыми. На установках глубокой депарафинизации заменяют компрессоры типа 8ГК компрессорами с электроприводом и т. д. Большое внимание уделяется использованию коррозионностойких материалов. При модернизации колонн и емкостей зоны, подверженные повышенному коррозионному износу, облицовывают нержавеющей сталью. Схемы обвязки аппаратов, работающих со средами, вызывающими повышенную коррозию, выполняют также из нержавеющих сталей. [c.201]

    Отказы теплообменников происходят в основном из-за пропуска продукта через вальцовочные соединения и через уплотнение крышки плавающей головки и из-за коррозии труб трубного пучка. [c.203]

    Схема 3 самая распространенная в отечественной практике. Она наиболее гибка и работоспособна при значительном изменении содержания бензиновых фракций и растворенных газов. Коррозионно-агрессивные вещества удаляются через верх первой колонны, таким образом основная колонна защищена от коррозии. Благодаря предварительному удалению бензиновых фракций в змеевиках печи и теплообменниках не создается высокого давления, что позволяет устанавливать более дешевое оборудование без усиления его прочности. [c.34]

    Оросительные теплообменники (рисунок 1.7) применяют главным образом в качестве холодильников и конденсаторов, причем около половины тепла отводится при испарении охлаждающей воды. В результате расход воды резко снижается по сравнению с ее расходом в холодильниках других типов. Относительно малый расход воды - важное достоинство оросительных теплообменников, которые, помимо этого, отличаются также простотой конструкции и легкостью очистки наружной поверхности труб. Существенными недостатками оросительных теплообменников являются громоздкость неравномерность смачивания наружной поверхности труб, нижние концы которых при уменьшении расхода орошающей воды очень плохо смачиваются и практически не участвуют в теплообмене коррозия труб кислородом воздуха наличие капель и брызг, попадающих в окружающее пространство /29/. [c.26]

    В теплообменниках наиболее агрессивной средой яаляется регенерированный раствор, при этом интенсивнее корродируют высокотемпературные секции. Это вызывается неполной отпаркой кислых газов. Для предотвращения коррозии содержание сероводорода [c.150]

    В крупнотоннажных установках первичной нефтепереработки технологические отказы кожухотрубчатых теплообменников могут быть обусловлены возрастанием теплового сопротивления труб вследствие отложения солей на стенках труб и их коррозии, что приводит к нарушению регламентированных значений температур выходных потоков. [c.18]

    Отказы аппаратов воздушного охлаждения обусловлены выкрашиванием подшипников и поломкой зубьев конических шестерен. Отказы кожухотрубчатых теплообменников могут быть вызваны засорением труб, образованием трещин и вибрацией, коррозией и утечками вещества через трубное и межтруб-ное пространства. Отказы реакторов с перемешивающими устройствами обусловлены, во-нервых, заклиниванием шарикоподшипников в верхней и нижней опорах перемешивающего устройства и, во-вторых, заливкой в лубрикатор масла, загрязненного посторонними примесями [65]. [c.18]

    Диспергирование осадка повышение термической стабильности. Частично предотвращает забивание сетки фильтра загрязнение резервуара осадками закоксовыва-ние теплообменника коррозию топливной системы загрязнение сопла форсунки [c.197]

    Хранение циркулирующего раствора МЭА в емкостях без подушки 1шертного газа приводит к тому, что при взаимодействии МЭА с кислородом и СО2, содержащимися в воздухе, образуются нежелательные побочные соединения, наиример углекислые соли этилен-диамина. Внешне процесс карбонизации характеризуется потемнением МЭА. В результате длительного контакта с воздухом он становится почти черным. Примеси углекислого газа усиливают сероводородную коррозию, особенно при повышенных температурах, как это имеет место в рибойлере и теплообменниках раствора МЭА. [c.150]

    Блочные теплообменники имеют широкое применение на предприятиях химической промышленносги. Они применяются главным образом в случаях, когда в качестве теплоносителей используются агрессивные вещества, вызывающие коррозию. [c.231]

    Оросительные теплообменники применяются с целью экономии охлаждающей воды, имеют ряд недостатков, в числе КОТО1РЫХ большая металлоемкость, обмерзание в зимнее время, повышенная атмосферная коррозия. Применяются преимущественно в южных районах. [c.91]

    Сырая нефть насосом 1 прокачивается через теплообменники 2, паровые подогреватели 3 (на комбинированной установке ЭЛОУ—АТ через теплообменники боковых погонов) и с температурой 110—120 С поступает в электродегидратор I ступени 4. Перед насосом 1 в нефть вводится деэмульгатор, а после подогревателей 3 — раствор щелочи, который подается насосом 7. Кроме того, в нефть добавляется отстоявшаяся вода, которая отводится из элек-тродегидратора II ступени и закачивается в инжекторный смеситель 5 насосом 13. С помощью насоса 8 предусмотрена также подача свежей воды. В инжекторном смесителе 5 нефть равномерно перемешивается со щелочью и водой. Раствор щелочи вводится для подавления сероводородной коррозии для нейтрализации кислот, попадающих в нефть при кислотной обработке скважин, а вода — для вымывания кристаллов солей. [c.9]

    С целью осушки масло по выходе из колонны 11 подают в колонну 15 вакуумной осушки, откуда оно насосом 17 через сырьевой теплообменник 20, водяной холодильник 21, фильтр 23 и доохладитель 24 выводится с установки в резервуар гидродоочищенного масла. В фильтре 23 масло освобождается от катализаторной пыли и твердых частиц — продуктов коррозии. [c.51]

    За последнее время для уменьшения количества сточных вод четко определилась тенденция перехода с водяного охлаждения на воздушное, что позволяет на 70—80% сократить расход воды и значительно уменьшить количество промышленных стоков, требуюших очистки. Срок службы аппаратов воздушного охлаждения намного больше, чем аппаратов водяного охлаждения, и приводы воздушных вентиляторов работают почти без повреждений. В аппаратах воздушного охлаждения коррозия и загрязнение ребристой поверхности труб со стороны воздуха незначительны. Поскольку воздух почти не вызывает коррозии, трубы для аппаратов воздушного охлаждения можно изготавливать из более дешевых материалов, чем для кожухотрубчатых теплообменников. В аппаратах воздушного охлаждения нет необходимости в частой чистке наружной поверхности труб. [c.66]

    Пример 5. Определить возможность использования теплообменника с неподвижными трубными решетками типа ТН (без компенсатора) по следующим данным Од = 0,6 м бк = 5,0 мм, н = 25 X 2 мм, п 240, Ртр = 0,6 МПа, рмтр = 1,0 МПа, /тр = 70 °С, (к= 170 °С. Прибавка на коррозию Ск = 1,0 мм, материал корпуса и труб — углеродистая сталь (а = 240 МН/м , = 250 МН/м2, дк = 130 МН/м , а = 137 МН/м = = 1.84- МН/м тр == 1,94- 10= МН/м , атр = а,( = 11,0 х X 10- 1/Х). [c.82]

    Типовая схема установки электрообессоливания (ЭЛОУ), используемой на НПЗ, представлена на рис. 1.1. Сырая нефть прокачивается через теплообменники 2, и с температурой 80—120 °С поступает в электродегидратор первой ступени 6. Перед насосом I в нефть вводится деэмульгатор, а после теплообменников— раствор щелочи, чтобы довести pH дренажной воды до 7,0—7,5. Подача раствора щелочи необходима для подавления сероводородной коррозии и нейтрализации неорганических кислот, попадающих в нефть при обработке скважин кислотными растворами. Расход щелочи для повышения pH дренажной воды на единицу составляет 10 г/т [1]. Насосом 8 подается свежая вода на первую и вторую ступени электрообессоливания. В инжекторном смесителе 3 нефть перемешивается с раствором щелочи и водой, и смесь подается в низ электродегидра- [c.12]

    Кожухотрубиые теплообменники выпускают жесткой конструкции и с плавающей головкой (см. рис. 1.39), В теплообменниках жесткой конструкции иучок труб закреплен в трубных решетках, приваренных к кожуху аппарата. При значительной разности температур кожуха и труб о-следние удлиняются неодинаково. Это вызывает значительные напряжения в трубных решетках и может нарушить герметичность аппарата. Теплообменники жесткой конструкции применяют при сравнительно малой разности температур между теплоносителями— не более 50 °С. Недостатком теплообменников этого типа является также невозможность чистки наружной иоверхиостн 1рубок механическими способами. Поэтому ич применяют в тех случаях, когда в межтрубное пространство направляется теплоноситель, не вызывающий отложений на стенках аппарата и его коррозии. Теплообменники жесткой конструкции просты в изготовлении и дешевле теилообменников других типов. [c.110]

    Дефекты корпуса абсорбера и его внутренних устройств связаны с коррозионным и эрозионным износом, обусловленным термическим воздействием среды. РГзнос абсорбера вызывает закупорку или загрязнение трубопроводов небольшого сечения, а также теплообменников образующимися продуктами коррозии. [c.256]

    Все регулирующие клапаны должны иметь мягкое седло . Регуляторы уровня низа выпарной колонны или кипятильника рекомендуется устанавливать на линии выхода холодного раствора из холодильника. Это исключает прорыв кислых газов из выпарной колонны в теплообменники и холодильники регенерированного раствора амина, в результате чего коррозия этого оборудования значительно уменьшается. По этой н<е причине клапаны системы регулирования уровня абсорбера следует устанавливать на линии выхода насыщенного раствора из аминового теплообменника. Если нет опасности разложения раствора, то вместо ДЭА рекомендуется применять МЭА, так как он имеет более высокую поглотительную способность и не так дорог. Содернсание сернистых соединений в очищаемом газе можно легко понизить с помощью МЭА [c.270]

    Коррозия. Дополнительные источники коррозии — кислые осадки ]1а поверхности металла (гальваническое действие), эрозионный износ поверхности металлов, а также слабый контроль за кислотностью раствора. Крупной проблемой является коррозия от напряженности металла, которая обычно возникает при неудачном выборе материала для изготовления аппаратуры. Если установка плохо запроектирована, то проблему коррозии не решает даже добавление в раствор соответствующих ингибиторов, хотя в этом часто возникает необходимость. Для изготовления аппаратуры можно применять обычную углеродистую сталь при условии, что на установке будет проводиться строгий контроль. В случае повышенной коррозии рекомендуется применять сталь марок 304 и 316. Имеются сообщения об успешном применении для изготовления теплообменников стали марки 7072, плакированной алюминием. Испытывались также стали, плакированные другими металлами и покрытые пластиком. О результатах применения пластикового покрытия нет единого мнения. Имеются сообщения об успешном применении и отрицательные выводы, хотя дело кажется довольно простым изолировать металл пластиком и принять меры к исключению течи (проколов) в этой изоляции. Добавка 7 г КазСОд на 1 л раствора иногда способствует уменьшению коррозии. Для поглощения кислорода в раствор добавляется гидразин. [c.278]


Смотреть страницы где упоминается термин Теплообменники, коррозия при: [c.170]    [c.149]    [c.221]    [c.75]    [c.167]    [c.163]    [c.97]    [c.98]   
Морская коррозия (1983) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Защита трубок теплообменников высокого давления от коррозии

Теплообменники защита от коррозии

Теплообменники, коррозия при полном погружении



© 2025 chem21.info Реклама на сайте