Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Хлорэтан в воде

    Хлорэтан (води, р-р) Этанол [c.577]

    Тетра-хлорэтан Г ексан Гептан Декан Додекан Тетрадекан Ацетон Бензол Вода Толуол Четыреххлористый углерод Этиленгликоль Вода Бензол Диэтиловый эфир Изоамиловый спирт Сероуглерод Хлороформ Этиловый спирт Вода Этиловый спирт Вода Бензол Вода [c.410]

    Вода — ацетон или бутанон-2— хлорбензол, н-гептан или 1,1,2-трн-хлорэтан, [c.203]


    Этилен с бромной водой, содержащей хлорид натрия, дает три продукта — 2-бромэтанол, 1-бром-2-хлорэтан и 1,2-дибромэтан  [c.584]

    Свойство сухих ионообменников жадно поглощать воду применено для обезвоживания полярных и неполярных жидкостей [37]. С помощью сульфокатионита дауэкс-50 W в К-форме удалось понизить концентрацию воды, например, в этаноле и 1,1,1-три-хлорэтане менее чем до 10- %. [c.16]

    Азеотропная отгонка применяется для очистки сточных вод, содержащих, например, хлорэтан, ароматические углеводороды, сложные эфиры и полиэфиры, фенол, акрилонитрил, бутилацетат [c.114]

    Хорошо растворяется в углеводородах, спиртах, плохо растворяется в воде. Растворимость в воде при 20°С равна 0,05%. растворимость воды в пента-хлорэтане при 20°С равна 0,03 /о- [c.185]

    Хлорэтан-1-сульфокислота получена с небольшим выходом действием сернистокислого натрия на хлористый этилиден [116]. В качестве побочных продуктов реакционная смесь содержит ацетальдегид и альдегидные смолы. Сульфохлорид образуется с выходом 50% нри хлорировании водной суспензии тритиоацетальдегида [69г, 117] или его раствора в ледяной уксусной кислоте. Кипящая вода гидролизует его в сульфокислоту. Кипящий метиЛовый спирт действует аналогичным образом, тогда как с кипящим этиловым спиртом сульфохлорид не реагирует для этой реакции необходима температура 130. Превращение сульфохлорида в кислоту происходит, вероятно, через промежуточное образование эфира  [c.125]

    ДИФТОРИ-ХЛОРЭТАН (хладон 142) СНзСРзС , л —130,8 °С, кип —9,2 С не раств. в воде КПВ 10,6— 15,1%. Получ. хлорированием 1,1-дифторэтана при УФ облучении. Хладагент. При высокой конц. оказывает удушающее действие. [c.186]

    Синтез двухводного кристаллогидрата -окси-2-хлорэтан-сульфата натрия. В стакане емкостью 500 мл, снабженном мешалкой, растворяют 104 г М) сернистокислого кислого натрия в 160 мл воды. К полученному раствору добавляют концентрированный раствор хлорацетальдегида, содержащий по анализу 87,5 г [ М) димергидрата хлорацетальдегида. Раствор фильтруют, переносят в колбу Кляйзена и в вакууме (60—70 мм) при температуре не выше 40° отгоняют воду до образования сухого остатка. После высушивания в вакуум-эксикаторе над серной кислотой или пятиокисью фосфора получают около 180 г дигидрата 1-окси-2-хлорэтансульфоната натрия. Выход близок к количественному. [c.18]

    В производственных (условиях, а также при изучении работы различных опытных адсорбционных установок для очистки сточных вод применяли в качестве экстрагентов адсорбированных веществ из углей хлористый метил в виде насыщенных паров в смеси с жидким конденсатом, хлорэтан, метанол, этанол, ацетон, бензол, хлорбензол, б)утилацетат и др. В большинстве случаев эти экстрагенты относятся к легковоспламеняющимся веществам, что препятствует их широкому применению. [c.121]


    Бретчер [306] перегонял тетрахлорэтилен в вакуУме с целью избежать образования фосгена и сохранял его в темноте без доступа воздуха. Гринвальд [749] удалял 1,1,2-трихлорэтан и 1,1,1,2-тетра-хлорэтан из тетрахлорэтилена противоточным экстрагированием его смесями этилового спирта с водой. Очищенный препарат оказался более стойким по отношению к свету, теплу, влаге и окислению. [c.406]

    Абгазы, очищенные от водорастворимых примесей, через холодильник 4 и газоотделитель поступают в колонну Гас-паряна 2, орошаемую водой. Из колонны 2 инертные газы и некоторые нерастворившиеся в кислоте примеси (хлорэтан, хлор) через холодильник 5 и газоотделитель 17 направляются в санитарную колонну. Очищенная соляная киспота из копонны [c.82]

    При повышенных температурах пентапласт стоек к абгазам хлорирования этилового спирта (хлористый водород — 85—90%, хлор—5—10%, хлорэтил — 2—3%) до 45 °С, перхлорэтилену при 50 °С, спиртовой адсорбции хлора (сумма альдегидов по хлоралю 8—10%, соляная кислота 10—15%, вода 10%, остальное — этанол) при 35—50 °С, полихлорпропану при 40 °С, четыреххлористому углероду при 40 С, смеси перхлорэтилена (42,5%) с четыреххлористым углеродом (53,8%) и хлорэтаном (3—5%) при наличии следов хлористого водорода и хлора при 40 °С, 25—30%-ной соляной кислоте при 40—100 С, соляной кислоте с примесью монохлоруксусной кислоты, фенолам и дихлорфенолам при 30—40 °С, хлористому водороду при 100 С, хлористому натрию при 90 °С. [c.272]

    Для определения примесей в винилхлориде, получаемом в промышленности каталитическим газофазным гидрохлорированием ацетилена, были использованы методы газо-жидкостной хроматографии в сочетании с химическим микроанализом и ИК-снектро-скоиией. Хроматографический анализ с предварительным концентрированием примесей позволял количественно определять примеси в винилхлориде высокой чистоты на уровне до 5-10" — 5-10- %. В техническом винилхлориде обнаружено 26 примесей, из них идентифицировано 24 вода, железо, хлористый водород, ацетилен, метилацетилен, винилацетилен, хлорэтан, ацетальдегид, р-хлорпро-пилен, винилиденхлорид, транс-дихлорэтилен, г/ыс-дихлорэтилен, [c.169]

    Роторно-щелевые = 25 мм с , = 35 мм (бензол, толуол, ди-хлорэтан, метилхлорвд — вода) [c.113]

Рис. VIII.3. Хроматограмма разделения галоидуглеводородов, растворенных в воде [36], полученная на кварцевой колонке (30 м х 0,53 мм) с силиконом DB-624 (толщина пленки 3 мкм) при программировании температуры. Расход гелия 6 мл/мин. 1 — дихлордифторметан 2 — хлорметан 3 — винилхлорид 4 — бромметан 5 — хлорэтан Рис. VIII.3. <a href="/info/1687412">Хроматограмма разделения</a> <a href="/info/1201518">галоидуглеводородов</a>, растворенных в воде [36], полученная на <a href="/info/913608">кварцевой колонке</a> (30 м х 0,53 мм) с силиконом DB-624 (<a href="/info/30238">толщина пленки</a> 3 мкм) при <a href="/info/19367">программировании температуры</a>. Расход гелия 6 мл/мин. 1 — дихлордифторметан 2 — хлорметан 3 — винилхлорид 4 — бромметан 5 — хлорэтан
    С d 0,9542, n 1,4859, ц 7-10" Па-с раств. в воде, СП., ацетоне, ограниченно — в эф. вся 94 °С, т-ра самовоспламенения 365 С. Получ. взаимод. ЫНз с 1,2-ди-хлорэтаном хаталитич. взаимод. NHi с этаноламином под давл. На. Примен. в произ-ве ПАВ, ингибиторов коррозии, сукцинимидных присадок к моторным маслам, ионообменных смол, лек. ср-в отвердитель эпоксидных смол. Раздражает слизистые оболочки верхних дыхатеяьяых путей и кожу, поражает печень (ПДК в воздухе 2 мг/м в воде 0,7 мг/л). [c.194]

    Линии I — вода II — хлор 111—этан IV — этан (рециркуляция) V— винилхло-рид VI — этан, винилхлорид VII — хлорэтан, дихлорэтан VIII — хлорированные продукты IX — дихлорэтан X — хлористый этил XI — хлор XII — этан, этилен и хлорированные продукты XIII — трихлорэтан. [c.19]

    Гидраты газов существуют в нескольких различных структурных формах [162]. Одну структуру образуют молекулы небольших размеров, например хлор, сернистый ангидрид, мегилмеркаптан, сероводород, бромметил, хлорметил, бром. Ячейка этой структуры содержит 48 молекул воды в ней имеется восемь полостей, в которых могут находиться связываемые в виде гидратов молекулы. Вторая структура наблюдается у гидратов более крупных молекул, таких как хлороформ, дихлорметан, хлорэтан. Элементарная ячейка этой структуры содержит 136 молекул воды в ней имеется восемь больших полостей п [c.122]

    Конденсация с формальдегидом дает пблйацётали, трудно растворимые или совсем не растворимые в большинстве обычных органических растворителей, хотя они отлично растворяются в хлорированных углеводородах (хлороформ, тетра-хлорэтан, хлористый метилен и т. д.). Продукты конденсации с ацетальдегидом растворимы во всех обычных растворителях, но значительно сильнее набухают в воде. [c.363]

    Позднее Смут и Бэбб [182] провели исследование массопередачи в ПСЭ ( )к = 0,05 м, Я=1,2 м, /1т = 40—60 мм, с о=1,5—3,0мм, <р = 23%) на системах МИБК — уксусная кислота — вода и три-хлорэтан — ацетон — вода. Для смесительно-отстойного режима получено корреляционное уравнение  [c.325]

    Для газо-жидкостноп распределительной хроматографии применяют специальную аппаратуру, так же как и для адсорбционной хрохматографии газов, что позволяет проводить как качественный, так и количественный анализ. Приборы — хроматографы обеспечивают автоматизацию процесса анализа, например, прп газовом каротаже в нефтяной промышленности, при непрерывном анализе парафиновых углеводородов, при определении суммы всех горючих газов и их раздельном определении, при анализе нефтяных газов. Осуществляется непрерывный автохлгатический контроль и экспресс-анализ. При поточных процессах в промышленности осуществляется автоматический многокомпонентный анализ. Методы газовой хроматографии позволяют определять микро-количества п даже следы различных органических веществ, например при меси бензола и циклогексанола в толуоле и циклогек-сане, примесь метилового спирта в воде, изопропилового спирта в бензоле. В 99%-ном хлорэтане можно таким путем обнаружить примеси углеводородов и галоидонроизводных. Можно определять очень малые количества метана, окиси углерода, азота и кислорода в чистом этилене. С другой стороны, методы газовой хроматографии позволяют разделять большие количества веществ непрерывным процессом, нанример получать чистый ацетилен пз газовых смесей, содержащих мало ацетилена (метод непрерывной газовой хроматографии). Газовые хроматографы с программным управлением получили применение нри препаративном разделении смесей различных органических соединений. Их колонки обеспечивают высокую производительность, что очень важно при разделениях сложных по составу смесей углеводородов и др. Высокотемпературная хроматография позволяет при 500—600° С осуществлять программированное изменение температуры. [c.198]


    При быстром методе по Tausz и Rumm y (см. стр. 542)32 в качестве жидкости для перегонки глицерина наиболее пригоден тетрахлорэтан. Вследствие его ядовитости недавно был предложен перхлорэтилен (т. кип. 119°). 33 Необходимо особенно следить за тем, чтобы насадка аппарата при перегонке была достаточно высокой для удержания увлекаемых паров глицерина, чтобы вода, собирающаяся над тетра-хлорэтаном, практически не содержала глицерина. Для определения берут 100 г глицерина и 150 г тетрахлорэтана, причем перегонка про- [c.559]

    Отходящие пз хлоратора 1 газы, которые содержат непрореагн-ровавший этилен, воздух, пары дихлорэтана и хлористый водород, образовавшийся в результате реакции, поступают для выделения дихлорэтана в конденсатор смешения 3, смонтированный над холодильником 4. Прн этом газы, от.ходящие из верхней части конденсатора смешения 3 (пенрореагировавшпй этилен, воздух, газообразные примеси, содержащиеся в исходном хлоре и этилене), после отмывки водой от НС1 в скруббере 5 удаляются в атмосферу. В верхнюю часть конденсатора 3 подают из холодильника 4 охлажденный до —20° С дихлорэтан. Газы, попавшие в нил<нюю часть конденсатора, о.хлаждаются. При этом газообразный ди.хлорэтан [c.88]

    Свойства серовато-белый порошок уд. вес 1,29 т. пл. 135 —140°. Растворяется в бензоле и ди.хлорэтане слабо в ацетоне не растворяется в бенз15не, воде. [c.227]

    Представляло интерес выяснить, что дает режим Кафарова на тонких лабораторных насадках. С помощью экспериментов сравнивали эффективности колонки диаметром 17 мм при режиме Кафарова и при пленочном режиме. Исследование проведено при использовании насадки четырех видов (стеклянные кольца Рашига диаметром 5,5 мм, одновитковые константановые спиральки Фен-ске диаметром 3,5 мм, одновитковые константановые кольца диаметром 1,8 мм, двух- и трехвитковые треугольники из них-ромовой проволоки с внутренней высотой треугольника 1,3 мм) на четырех бинарных системах четыреххлористый углерод — бензол, 1,2-ди-хлорэтан — бензол, ге-гептан — бензол и уксусная кислота — вода. [c.70]

    ЭТИЛЕНХЛОРГИДРИН (1-окси-2-хлорэтан, Р-хлорэтиловый снирт, 2-хлорэтанол) СЮН3СН2ОН, мол. в. 80,517— бесцветная с эфирным запахом жидкость т. пл. —62,6°, т. К1Ш. 128,7°/760 мм, 60°/50 мм 1,20190 1,44197 смешивается с водой и многими органич. растворителями вязкость 3,913 спуаз (15°) теплота парообразования 9,901 ккал1молъ (т. КИН.) т. всп. 58,9° (в закрытом сосуде) диэлектрич. проницаемость 25,8 (25°) дипольный момент (20°) 1,75 В. Э. образует азеотропные смеси с водой, т. шш. 97,75/748 мм, 42,3% Э. с толуолом 106,05°, 31% циклогексаном и др. В пром-сти Э. получают иа этплена п хлора в водной среде  [c.523]

    На стадии пиролиза требуется очень чистый ДХЭ (не менее 99,5%). Если ДХЭ, полученный прямым хлорированием, удовлетворяет этим требованиям, то ДХЭ процесса оксихлорирования содержит в виде примесей этилхлорид, дихлорэтилены, три-хлорэтан, хлорметаны, хлораль и другие соединения. После объединения ДХЭ со всех стадий его промывают водой, затем раствором NaOH (каустическая сода) и подвергают ректификации, выделяя чистый ДХЭ, отделенный от легких и тяжелых примесей в двух колоннах. От следов хлорида железа (П1) ДХЭ очищают с помощью активированного угля, боксита, бентонита (Пат. 2652332, ФРГ, 1977 2540—332, 1977). Поскольку непревращенный ДХЭ на стадии пиролиза рециркулирует, то необходимо учесть примеси, появляющиеся в результате этого процесса (трихлорэтилен, хлоропрен). Их удаляют обработкой ДХЭ-рециркулята хлором, хлороводородом или гидрированием. [c.79]

    В качестве растворителя для экстракции жиров может быть использован бензин, ди.хлорэтан, трихлорэтилен, гексан и др. На наших заводах преимущественно применяется бензин. Он хоро-. шо растворяет жир и меньше других растворителей извлекает " Ьежировые вещества. Недостатком является то, что он очень легко воспламеняется. В этом отношении имеют некоторое преимущество хлорированные углеводороды. Например, дихлорэта.ч при соприкосновении с пламенем сначала вспыхивает, а затем гаснет. Но дихлорэтан токсичнее, чем бензин. Он лучше растворяется в воде, за счет этого увеличиваются потери в производстве, и больше извлекает посторонних нежировых веществ И1 масличных семян. [c.8]


Смотреть страницы где упоминается термин Хлорэтан в воде: [c.98]    [c.735]    [c.764]    [c.622]    [c.180]    [c.127]    [c.505]    [c.335]    [c.437]    [c.88]    [c.1744]    [c.222]    [c.115]    [c.55]    [c.16]    [c.453]   
Справочник по производству хлора каустической соды и основных хлорпродуктов (1976) -- [ c.358 ]




ПОИСК





Смотрите так же термины и статьи:

Хлорэтан

Хлорэтан растворимость в воде



© 2024 chem21.info Реклама на сайте