Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Этилен чистый

    Давно известный метод автотермического дегидрирования этана в этилен (рис. 12) усовершенствован в настоящее время для дегидрирования природных газов [93]. В реакторе с керамической футеровкой теплоносителем являются фарфоровые шарики. Газовая смесь из этана и пропана вводится в реактор вместе с чистым кислородом и сжигается не до конца при 850—900 °С. Давление 0,6 кгс/см2, время контакта 1с. При этом получаются следующие продукты этилен, пропилен, метан, окись и двуокись углерода. [c.35]


    Получение полиэтилена нри высоком давлении. Полиэтилен впервые был получен при высоком давлении английской фирмой Империал Кемикалс Индастри [59]. Способ получения заключается примерно в том, что этилен при температуре 120—130° и давлении 1000— 20ОО ат полимеризуется в присутствии небольших количеств чистого кислорода. Молекулярный вес полимернзата получается тем больше, чем ниже температура полимеризации. Практически, однако, оптимальной рабочей температурой признана 120—130°, потому что уже при этих условиях температура плавления нолимеризата составляет около 110°. Полимеризация проводится при полном отсутствии растворителя. Содержание кислорода лежит практически в пределах 0,05—0,1%, считая на этилен. Время пребывания этилена в установке составляет 2—6 мин. при 10—15%-ном превращении этилена за один проход через печь. Схема работы при получении полиэтилена представлена на рис. 137. [c.222]

    Открытие процесса полимеризации этилена привлекло к себе внимание по ряду причин. Во-первых, с теоретической точки зрения, так как в то время полагали, что этилен не может давать высокомолекулярного пластического материала. Во-вторых, открытие его можно рассматривать как пример чисто научного исследования, не представлявшего практического интереса для промышленности. В-третьих, в то время как из этилена получались низкомолекулярные полимеры, высокомолекулярных же пластических полиэтиленов не удавалось получить из этилена, приготовленного с применением тех же методов очистки. [c.166]

    Сополимеры этилена с олефинами имеющими большее чем этилен чисто атомов углерода в цепи на пример с пентеном Тройные сополимеры например с пропиленом или ацетиленом [c.186]

    Продукты этилен чистый сорта для полимеризации. Побочные продукты отходящий газ с высоким содержанием водорода отходящий газ с высоким содержанием метана пропилен технический-(90—94% мол.) и (или) пропилен для полимеризации фракция С4, состоящая главным образом из бутенов и бутадиена высокоароматический высокооктановый бензин и котельное топливо. [c.223]

    Как видно из табл. 32, наиболее легко полимеризуется этилен. Чистый этилен, однако, при температуре выше 200° способен разлагаться со взрывом но реакции  [c.281]

    Механизм реакции присоединения к этилену чистого Вг2, связь в молекуле которого гомеополярна, совсем иной. Ограничимся этими сведениями о двойных связях и рассмотрим некоторые ненасыщенные соединения. [c.38]

    Полагают, что высококипящие олефины должны образовываться в результате ступенчатого присоединения этилена. Этот катализатор показал слабую активность по отношению к димеризации -бутилена, но при полимеризации этилена всегда получается значительно больше гексена, чем октена, даже нри высоких степенях превращения его в бутилен. Добавление к этилену 50 % бутена-2 повысило на 50 % количество образовавшегося гексена на израсходованный этилен. Маловероятно, что этот результат был просто следствием чисто физического подавления десорбции бутилена с катализатора, так как при добавлении пропилена к сырью пентен составлял 30 % полимерного продукта. [c.206]


    Алкилирование бензола этиленом чистой этиленовой фракции [c.302]

    Люис сделал значительный вклад в химию этилена. В его опытах этилен чистый или с примесью водорода пропускался через платиновую трубку 2 жжХ 140 мм. Судя по значительным количествам ацетилена и метана, он заключил, что перво-й стадией разложения является образование равных объемов этих углеводородов  [c.39]

    Что действительно хлорпроизводные оказывают каталитическое действие на реакцию алкилирования, было показано проведением параллельных опытов в присутствии и в отсутствии хлороформа. В периодическом алкилировании при 330° и давлении 232 ат изобутана этиленом (исходная смесь содержала около 12,5% вес. этилена) было получено лишь 33,3% вес. жидких углеводородов, а в тех же условиях, но в присутствии 1% вес. хлороформа, был получен выход алкилата 141% вес. Продукт, полученный в отсутствии хлороформа, был сильно непредельным, йодное число фракции, кипящей до 160°, равнялось 90, в то время как иодное число этой же фракции, полученной алкилированием в присутствии хлороформа, равнялось 6. С повышением температуры реакции различие между продуктом, полученным в индуцированной хлороформом реакции, и продуктом чисто термической реакции становилось менее заметным, при 400 последняя дала 155% жидкого продукта, в первой же получен выход 232% (на этилен). [c.308]

    Хлор и чистый этилен могут находиться вместе и стеклянной аппаратуре в течение некоторого времени без заметной реакции. При низкой температуро иод образует лабильное молекулярное соединение с соотношением мо.пей компонентов 1 1с пропиленом, г ,мс-бутоном-2, транс-бутеном-2 и бутадиеном-1,3, как было показано при помощи характеристических полос спектров поглощения [26]. [c.364]

    При применении чистого этилена и хорошем отношении беи-аол этилен образование побочного продукта реакции в результате полимеризации незначительно. [c.494]

    Сернокислотная гидратация. Производство этанола. В качестве сырья можно использовать как чистый этилен, так и газы (с установок крекинга или коксования), содержащие 30—40% этилена, в которых остальными компонентами обычно являются этан и метан. [c.200]

    Интересные результаты получены при хлорировании смеси этана и этилена (1 1), которые получаются при разделении газов крекинга. Количество хлора, вступающего в реакцию присоединения с компонентами этой смеси, меньше, чем необходимо для взаимодействия с чистым этиленом, им методом можно получить смесь, содержащую 67—68% хлористого этила. Зависимость количества хлора (в %), который реагирует (с замещением или присоединением) со смесью этана и этилена, от температуры представлена на рис. 99. [c.276]

    В настоящее время большое развитие получило производство различных пластических масс на основе полиолефинов, в частности полиэтилена, используемого в электротехнической, машиностроительной, химической, легкой и пищевой промышленности, в строительстве и в других отраслях народного хозяйства. Для получения высококачественного полиэтилена требуется очень чистый этилен, освобожденный от паров воды, двуокиси углерода и других примесей. Очистка этилена от указанных примесей успешно проводится цеолитами. [c.111]

    Источником кислорода для оксихлорирования служит либо сжатый воздух, либо чистый кислород. При использовании сжатого воздуха его следует очищать от масла, которое может попасть в него из воздушного компрессора. Масло, содержащееся в воздухе, оказывает такое же действие, как масло, присутствующее в этилене, а именно повышает перепад давления. Всасывающее устройство воздушного компрессора помещают так, чтобы в забираемом воздухе не содержалось загрязнений. [c.270]

    При разделен ии смеси этилен — этан состава 50—80% (об.) легкого компонента получают высококонцентрированный этилен чистой выше 99,95% (об.). Близкие летучести компонентов смеси и жесткие требования к чистоте этилена требуют значительных внергетических затрат, на производство холода, которые составляют порядка 38% общих затрат яа этиленовой устаиовке. Высокими энергетическими затратами ха рактеризуется также процесс разделения близкокипящей смеси процилен— пропан. В связи с этим для таких смесей все большее применение в промышленности находят новые технологические схемы со связанными материальными и тепловыми потоками и с тепловым насосом. Некоторые примеры применения таких схем рассматриваются ниже. [c.301]

    Таким образом, применение абсорбера позволило сразу отделить от газа метан-водородиую фракцию и тем самым облегчить иоследую-1цее выделение этилена. По этой схеме можно получить этилен чисто-гой до 97%, а этан и фракцию —до 90—95%. [c.316]

    Основной задачей, которая ставится при полимеризации этиленовых углеводородов, является получение высокооктановых бензиновых фракций. Известный интерес представляет также использование процесса полимеризации для синтеза смазочных масел и твердых пластических масс, обладающих высокими изоляционными свойствами. Поли.меризации могут быть подвергнуты как чистые олефиновые углеводороды, так и их смеси с другими газами (предельными углеводородами, водородом). На практике применяют этилен, чистый или в смеси с этаном, пропилен-пропановую и бутилен-бутановую фракции, а также нефракционированныв газы различных процессов нефтепереработки (газы крекинга, пиролиза). При производстве моторных топлив стремятся к тому, [c.279]


    По окончавии вытеснения этилена молекулярные сита регенерируют током водорода при 300 °С в течение 1 ч. Получают этилен чистый (99,999%) с примесями СН4 (0,0002%) И СгНб (0,00087о)- Выход чистого этилена составляет 60%- [c.141]

    Образующийся полиэтилен в смеси с непрореагиро-вавшим этиленом и продуктами побочных реакций после реактора поступает в сепаратор высокого (около 30 МПа), а затем низкого (около 0,3 МПа) давления, в которых от расплавленного полимера отделяют газообразный этилен. Чистый полимер подают в шнекоприемное устройство, из которого его выдавливают под слой воды в виде ленты и подают на грануляцию. Этилен после очистки от механических примесей (смоло- и коксообразных частиц) п побочных (газообразных) продуктов вновь возвращают на полимеризацию. Общий коэффициент использования этилена составляет около 95 %. [c.222]

    Пары состоят на 98% из этилена, поэтому принимаем их за чистый этилен. Поскольку давление в системе 23 ат, при определогаш объема иароп тюобходимо учесть отклонение от законов идеальных газов. [c.233]

    Линии I — кислород II — остаточный газ пиролиза III — нефтяная фракция IV — вода V — масло VI — остаточный газ VII — смола VIII — тяжелые ароматические углеводороды IX —легкие ароматические углеводороды X — окись углерода XI — чистый этилен XII — чистый ацетилен. [c.98]

    При смешении жидкого изобутена при —80° с небольшим количеством фтористого бора, растворенного в жидком этилене, практически мгновенно и почти количественно происходит полимеризация изобутена с образованием каучукообразного вещества (оппанол В) [65]. В случае применения очень чистого изобутена полимер имеет молекулярный вес около 200000, т. е. в нем соединяется примерно 3500 молекул изобутена. При добавлении высших олефинов, нанример ди- и триизобутена, молекулярный вес полимера снижается. Добавка же 0,015% диизобутепа понижает молекулярный вес на 50000 единиц. Поэтому для регулирования молекулярного веса получаемого полимера к изобутену добавляют большее или меньшее количество ди-изобутена. Освобождающееся тепло реакции отводится за счет испарения этилена, пары которого затем конденсируются и жидкий этилен возвращается в процесс. [c.224]

    Для промышленного этилировапия бензола этиленом последний должен быть чистым. Он не должен содержать гомологов этилена, как пропен или бутен, потому что образование даже небольших количеств изопропилбен-зола может сильно мешать разделению бензола, моноэтилбензола и поли-этилбензола из-за налегания друг на друга температур кипения компонентов смеси. Этилен должен быть практически свободен также от кислорода и окиси углерода, так как эти газы увеличивают расход безводного хлористого алюминия. [c.228]

    Серная кислота. Этилен не полимеризуется в присутствии серной кислоты, потому что образуются устойчивые этилгидросульфат и этил-сульфат. Однако этилен полимеризовался ири обработке его 2 %-ным раствором сульфата ртути и 5 %-ным раствором сульфата меди в 95 %-ной серной кислоте [11]. В присутствии этих солей ссрнан кислота поглощала этилена в 100 раз больше, чем в их отсутствии. При стоянии в течение некоторого времени раствор расслаивался на два слоя верхний — углеводородный и нижний — пастообразный. Если небольшое количество пасты сразу же смейать с чистой серной кислотой, то смесь приобретает максимальную способность к поглощению этилена. Эта активность катализатора постепенно уменьшалась и совершенно терялась через 24 часа. Углеводородный слой состоял из смеси предельных углеводородов, включая парафины и циклопарафины. Непредельные соединения, напоминающие углеводороды с открытой цепью и циклические терпены, также были выделены при разбавлении водой сернокислотного слоя [3]. [c.190]

    Сырой стирол в чистый стпрол Бензол в стирол в совокупности Этилен в стирол в сопокупности [c.239]

    Высокотемпературное (450—700 °С) хлорирование низкомолекулярных алифатических углеводородов, главным образом метана, этана, пропана, бутана, изобутана, этилена и пропилена, а также их хлорпроизводиых, проходит уже не как чистая реакция замещения, а большей частью как расщепляющий и строящий крекинг. В случае метана преобладает соединение обломков j с образованием иерхлорэтилена, в случае пропанов и пропиленов — расщепление с образованием четыреххлористого углерода и иерхлорэтилена, в случае этапов и этиленов в зависимости от условий реакции могут получаться различные продукты [183—186]. [c.201]

    Изобутан и пропилен. Как и при чисто термическом алкилировании, алкилирование этиленом в присутствии галоидсодержащих катализаторов идет легче, чем алкилирование другими более высокомолекулярными олефинами. Так, например, для алкилирования изобутана пропиленом при 413° в присутствии хлористого пропилена необходимо давление 420 ат, чтобы получить выход жидких продуктов в 150% вес. на пропилен (теоретический выход гептанов на пропилен 238% вес.). Алкилирование в тех же условиях, но боз добавления катализатора, дает выход жидких продуктов лишь 65%. При снижении давления до 210 ат выход жидких продуктов в инициированной и чисто термической реакциях падает до 69 и 29% вес. соответственно. В опытах, проводимых в периодическом процессе при 400°, 280 ат и при времени реакции 15 мин., с использованием изобутан-пропиленовой смеси, содержаш,ей 10% вес. пропилена и 1—3% вес. трихлопропана, трибромпропана, хлора или брома, были получены выходы гептана 25—28% от теоретического (нри выходе жидких продуктов в количестве 140 170% вес. на взятый пропилен). [c.309]

    Исходный пропилен должен быть очнь чистым 099,5%), ни в коем случае не должен содержать азотных, фосфорных и серных соединений и ацетиленов. Этот метод дает выход в единицу времени на единицу объема около 100 катализатор, о котором подробных сведений не имеется, необходимо регенерировать каждые 2—10 дней. Исходным продуктом могут служить также и смеси пропан — пропилен. При использовании чистого пропилена конверсия составляет 43—44%, селективность 94—98%. После перегонки получаются очень чистые продукты 99,8%-ный этилен и 96,4%-ный бутен-2 (наряду с 3,46% бутена-1). Бутен-2 можно либо подвергнуть алкилированию, либо дегидрировать в бутадиен. В настоящее время бутен-2 в основном и используется для получения бутадиена. Дегидрирование можно осуществлять термически или лучше каталитически (выход 76,9%) [13] присутствие бутена-1 при этом нежелательно [14-16]. [c.327]

    С повышением концентрации парафиновых углеводородов разветвленного строения в бензине его приемистость к тетраэтилсвинцу увеличивается. Чтобы предотвратить отложение свинцовых соединений в двигателе, тетраэтилсвинец добавляют в бензин не в чистом виде, а в виде этиловой жидкости, представляющей собой смесь тетраэтилсвинца с так называемыми выносителями. Выносителями называются вещества, образующие при сгорании в двигателе легко- летучие свинцовые соединения, которые удаляются из камеры сгорания вместе с отработанными газами, и этим предотвращается отложение соединений свинца в двигателе. В качестве выносителей применяются бромистый этил, альфамонохлорнафталин, этиленди-бромид, хлористый этилен, дихлорэтан и другие бромистые и хлористые соединения. [c.177]

    Избирательная гидрогенизация ацетилена была использована в промышленности в двух направлениях. Во-первых, для превращения ацетилена, содержащегося в некоторых определенных крекинг-газах, в этилен. Этот процесс удобен тем, что газы содержат водород в количестве, достаточном для гидрогеиизации ацетилена. Во-вторых, для превращения более или менее чистого ацетилена в этилен. Последнее применение представляет особый интерес для стран, имеющих недостаточное количество природного газа. В Германии во время второй мировой войны ацетилен превращался в этилен в больших масштабах с выходом этилена около 90%, катализатором служил палладий на силикагеле. В течение 8 месяцев температура катализатора в процессе постеиенно повышалась от 200 до 300 , а затем катализатор регенерировался без выгрузки из реактора (на месте) смесью пара и воздуха при 600°. Катализатор выдерживает три регенерации [112]. [c.240]

    Новый процесс получения этилбензола [228, 229], разработанный фирмами Mobil и Badger, экономически выгоден при алкилировании бензола чистым этиленом, а также газовыми смесями с содержанием этилена не менее 10%- Схема процесса представлена на рис. 6.7. Алкилирование пройсходит в паровой фазе в присутствии кристаллического алюмосиликатного цеолита. Катализатор — некорродирующий, что позволяет использовать обычные конструкционные материалы. [c.241]

    При помощи нагрева и давления этилен можно превращать в полимерные жидкости. Под давлением 70—135 атм и при температурах между 325 и 385° С получены жидкие продукты, в которых около 50% кипит ниже 200°С [354, 355]. Конечные продукты содержат заметное количество нафтеновых углеводородов. Термическая полимеризация ускоряется следами кислорода [356 и видоизменяется меркаптанами [357]. При помощи концентрированной серной кислоты этилен не нолимеризуется вместо этого образуются устойчивые сложные эфиры. С 90%-ной фосфорной кислотой сложные эфиры образуются ниже 250° С, но свыше температуры 250—350° С и под давлением 53—70 кГ сл1 образуются полимеры, кипящие в пределах бензин — осветительный керосин. Это полимеры комбинированного типа, содержащие олефины, парафины, нафтены и ароматику с изобутеном в отходящем газе [358, 322]. При помощи чистого хлористого алюминия этилен не иолимеризуется даже под давлением, но если катализатор активирован влагой или хлористым водородом, то в зависимости от времени, количества катализатора и т. д., получаются жидкие продукты, находящиеся в пределах от бензина до масляных фракций [360]. Они онять-таки являются полимерами комбинированного тина. Бензиновая фракция, выкипающая до-200° С, является большей частью предельной и имеет октановое число около 77 это наводит на мысль о присутствии разветвленных структур. Высококипящие порции дистиллята содержат [c.109]

    М-Бутан. н-Бутан в качестве сырья для получения этилена и пропилена имеет преимущества по сравнению с пропаном. Объясняется это тем, что в продуктах пиролиза и-бутаиа отношение пропилена к этилену выше, чем нри пиролизе пропана. Это имеет важное значение в связи с возрастанием в последнее время потребности в пропилене. Кроме того, получающийся пропилен легче выделять из продуктов пиролиза н-бутана, чем пропана, так как в последнем случае в нродз ктах пиролиза остается ненрореагировавший пропан, имеющий точку кипения, близкую к точке кипения пропилена. В случае использования к-бутана чистый пропилен можно получать непосредственно из пронановой колонны. При пиролизе бутана протекают следующие реакции  [c.40]

    При алкилировании изобутана чистым пропиленом ухудшается качество алкилата и резко возрастает расход серной кислоты. Поэтому нропан-пропиленовую фракцию перерабатывают в смеси с бутан-бутиленовой в соотношении, обеспечивающем содержание пропилена менее 50% от суммы олефинов Сд и С4. Этилен, диены, углеводороды и выше, органические соединения серы, вода — нежелательные примеси в сырье алкилирования. В промышленности концентрация т серной кислоты снижается с 98,5 до 90% при контактировании соответственно с 0,067—0,105 м этилена, 0,111—0,247 м диенов, 17—67 кг органических соединений серы (в расчете на чистую серу), 62—100 кг воды. Это соответствует росту расхода серной кислоты в среднем от 10 до 30 кг/т алкилбензина при концентрации нежелательных примесей в сырье на уровне 0,1%. Повышение концентрации инертных углеводородов (пропан, я-бутан) в сырье приводит к снижению скорости транспортирования реагирующих веществ, и поэтому их содержание необходи.мо максимально снижать. [c.169]

    Поскольку газ после второй ступени сбрасывают в атмосферу, в реакторе 5 подбирают режим таким, чтобы получился максимальный выход оксида этилена, т. е. ведут процесс при значительной степени конверсии оставшегося этилена и при несколько пониженной селективности. Газ второй ступени, как и после первой, охлаждают в теплообменнике 4 и направляют в абсорбер 6 второй ступени, где поглощается оксид этилена. Газ после этого абсорбера сбрасывают в атмосферу, а растворы оксида этилена (и СО2) из абсорберов 3 и 6 перерабатывают совместно, выделяя чистый продукт. Общий выход а-оксида 60% по этилену при средней селек-тивнюми 65% ц суммарной степени конверсии этилена 90%. [c.435]

    Оборудование. Оборудование установок, использующих кислород, сходно с оборудованием установок, применяющих воздух, за несколькими исключениями. Единственное добавление— компрессор для рециркуляции обогащенных этиленом отходящих газов. Для подачи чистого кислорода необходимы специальные трубопроводы и прокладки. Трубопроводы не должны содержать масла и смазок, а прокладки должны быть изготовлены из негорючих материалов. Процедура выключения установки должна проводиться так, чтобы кислород вымывался инертным газом для предотвращепия образования врывчатых смесей. [c.286]


Библиография для Этилен чистый: [c.595]   
Смотреть страницы где упоминается термин Этилен чистый: [c.50]    [c.205]    [c.106]    [c.578]    [c.76]    [c.259]    [c.22]    [c.267]    [c.240]    [c.241]    [c.271]   
Радиационная химия органических соединений (1963) -- [ c.102 , c.103 ]

Газовая хроматография - Библиографический указатель отечественной и зарубежной литературы (1952-1960) (1962) -- [ c.93 ]




ПОИСК







© 2025 chem21.info Реклама на сайте