Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Щелочные металлы плавления

Таблица 12. Температура плавления некоторых галогенидов щелочных металлов Таблица 12. <a href="/info/1597056">Температура плавления некоторых</a> <a href="/info/729706">галогенидов щелочных</a> металлов

    Как изменяется температура плавления и кипения в ряду щелочных металлов и чем это объясняется  [c.104]

    В главную подгруппу П группы входят элементы бериллий, магний, кальций, стронций, барий и радий. Все эти элементы, кроме бериллия, обладают ярко выраженными металлическими свойствами. В свободном состоянии они представляют собой серебристо-белые вещества, более твердые, чем щелочные металлы, с довольно высокими температурами плавления. По плотности все они, кроме радия, относятся к легким металлам. Их важнейшие свойства приведены в табл. 14.3. [c.387]

    Щелочные металлы характеризуются незначительной твердостью, малой плотностью и низкими температурами плавления и кипения. Наименьшую плотность имеет литий, самую низкую температуру плавления — франций (см. табл. 14.2). [c.383]

    Объясните резкое возрастание активности взаимодействия щелочных металлов с водой при переходе от лития к цезию. Для ответа на вопрос используйте данные таблицы 5 (см. приложение), причем не только такие, как изменение энтальпии взаимодействия щелочных металлов с водой и гидратации их ионов, но и такие физические характеристики, как температура плавления и плотность. [c.159]

    Нитриты устойчивее НЫОг (в молекуле кислоты ничтожно малый ион Н+, внедряясь в электронную оболочку атома О, ослабляет связь N—0), но только нитриты щелочных металлов плавятся без разложения. При термическом разложении нитритов образуется оксид металла,. N0 и ЫОг. Нитриты щелочных металлов разлагаются выше температуры их плавления, образуя оксиды пли пероксиды металлов, N0 и Оа (так как при высоких температурах N02 распадается на N0 и О2). Нитриты, так же как и НМОг, обладают окислительной и восстановительной активностью. В растворах они постепенно окисляются, переходя в нитраты. [c.409]

    Некоторые закономерности. Рассмотрим теперь на сравнительно простых примерах связь вида диаграммы плавкости с положением элементов в периодической системе. Химически подобные элементы (соединения) дают и аналогичные диаграммы. В частности, элементы одной подгруппы или стоящие рядом в периоде с почти одинаковыми размерами атомов обычно образуют твердые растворы. Закономерность Б изменении типа диаграмм плавкости на примере щелочных металлов показана на рис. 73. Из рис. 73 видно, что отличие свойств от других элементов подгруппы приводит к тому, что они взаимно нерастворимы ни в твердом, ни в жидком состоянии линия ликвидуса представляет собой горизонталь при температуре плавления НЬ, линия солидуса — горизонталь при температуре плавления Ы. [c.224]


    Из табл. 11.1 следует, что для щелочных металлов характерны невысокие температуры плавления, кипения и небольшие плотности. [c.251]

    Периодическое изменение физических свойств элементарных веществ. На рис. 1.4 представлен график зависимости температур плавления элементарных веществ от порядкового номера соответствующих химических элементов. Из этого графика виден характер изменения температур плавления элементарных веществ в периодах и группах. Каждый период начинается элементарным веществом с низкой температурой плавления (щелочные металлы), но по мере увеличения порядкового номера элементов в периоде температура плавления элементарных веществ растет, проходит через максимум (или максимумы) [c.48]

    Металлические S , Y, La получают путем металлотермического восстановления ЭСЬ и Э2О3 магнием. Из образующегося сплава магния с металлом магний удаляют высокотемпературной отгонкой в вакууме. Для получения S , Y, La используют также взаимодействие фторидов и хлоридов с кальцием (лолучение S , Y), щелочными металлами (получение Y, La), а также электролиз расплавов фторидов или хлоридов с добавками Na l или K l, вводимыми для понижения температуры плавления. Так, возмож- ность течения процесса  [c.497]

    Простые вещества. Медь, серебро и золото представляют собой металлы (соответственно красного, белого и желтого цвета) с гранецентрированной кубической решеткой. Поскольку у меди и ее аналогов в образовании связи принимают участие как П5-, так и (п—1) -электроны, то теплоты возгонки и температуры плавления у них значительно выше, чем у щелочных металлов. Медь, серебро и золото характеризуются исключительной (особенно, золото) пластичностью они превосходят остальные металлы также по тепло-и электрической проводимости. Некоторые константы рассматриваемых металлов приведены ниже  [c.621]

    Металлы обычно отличаются сравнительно высокой плотностью, высокими температурами плавления и кипения, относительно высокой прочностью. Однако эти физические свойства присущи не всем металлам так, температуры плавления ртути и галлия достаточно низки и равны минус 30 и плюс 39° С щелочные металлы имеют ннзкую плотность и твердость и плавятся при сравнительно невысокой температуре  [c.106]

    Наличие максимумов на кривых зависимости температуры плавления от молекулярной массы для галогенидов щелочных металлов становится понятным, если учесть ослабление поляризующего действия катионов в ряду Li+ — Na+ — К+ — Rb+ — s+ и усиление поляризуемости в ряду F — 1 — Вг — I-.  [c.114]

    Приведенные в табл. 14.2 данные показывают, что в большинстве случаев свойства щелочных металлов закономерно изменяются при переходе от лития к цезию. В основе наблюдающихся закономерностей лежит возрастание массы и радиуса атома в подгруппе сверху вниз. Рост массы приводит к возрастанию плотности. Увеличение радиуса обусловливает ослабление сил притяжения между атомами, что объясняет снижение температур плавления и кипения и уменьшение энергии атомизации металлов, а также уменьшение энергии ионизации атомов при переходе от лития к цезию. Однако стандартные электродные потенциалы щелочных металлов изменяются в ряду Li — s не монотонно. Причина этого, подробно рассмотренная в разделе 11.3.2, заключается в том, что величины электродных потенциалов связаны с несколькими факторами, различно изменяющимися при переходе от одного элемента подгруппы к другому. [c.383]

    Следует обратить внимание на постепенное снижение температур ликвидуса по мере перехода от литиевой системы к натриевой и калиевой. У литиевой системы кривые ликвидуса располагаются выше 1000°, у натриевой они снижаются до 800°, а у калиевой — еще ниже, т. е. с увеличением ионного радиуса катиона щелочного металла температура плавления смесей уменьшается. [c.101]

    Сообщается [327] о целесообразности комбинирования обработки кислородом с другими методами. Так, фракцию, выкипающую выше 500 °С, обрабатывают в присутствии кислорода плавленым гидратом окиси щелочного металла при 162—370°С, промывают водой для удаления металлов. Примеси отделяют фильтрованием, центрифугированием или отстаиванием. [c.206]

    Кварц. Во многих случаях вместо стеклянной посуды приме-някт посуду из плавленого кварца. Она чрезвычайно устойчива к резким изменениям температуры кварц плавится при высокой температуре (около 1700°С). Едкие щелочи и даже карбонаты щелочных металлов разрушают кварцевое стекло, кислоты же на него не действуют (кроме HF и отчасти Н3РО4). [c.45]

    Группа 1а (щелочные металлы). Плавление щелочных металлов происходит без изменения ближнего порядка, свойственного их объемноцентрированным кубическим структурам. Приращение объема при плавлении, составляющее 1,65% для лития и 2,5—2,6% для остальных металлов, представляет суммарный объем вакансий на гра- [c.258]

    В процессе работы иногда возникает необходимость плавить щелочные металлы. В этом случае плавление проводят под слоем парафина или минерального масла, плотность которого ниже 0,85 [c.31]


    Таллий находится в 9-м ряду III группы периодической системы. Это мягкий серебристо-белый металл, тускнеющий на воздухе, покрывающийся черной пленкой ТЬО. Температура плавления таллия 303°, кипения 1460°. Своими свойствами таллий близок к свинцу, серебру и щелочным металлам. [c.561]

    Металлические S , Y, La получяют лутем металлотермического восстановления ЭСЬ и 3j0j магнием. Из образующегося сплава магния с металлом магний удаляют высокотемпературной отгонкой л вакууме. Для производства S , Y, La используют также реакции фторидоя и хлоридов этих металлов с кальцием (получение S , Y) и щелочными металлами (получение Y, La), а также электролиз расплавов фторидов или хлоридов с добавками Na I или K I, вводимыми для понижения температуры плавления. Так, интенсивное течение процесса [c.483]

    Чистые щелочноземельные металлы имеют более высокие температуры плавления и кипения по сравнению с щелочными металлами, потому что для образования металлических связей в них имеется по два электрона на атом. По той же причине они обладают большей твердостью, хотя их тоже можно резать острым стальньгм ножом. Бериллий и магний-единственные элементы этой группы, широко используемые как конструкционные. металлы благодаря своей легкости они используются в чистом виде или в составе сплавов в авиастроительной и космической промышленности, где вес является очень важным фактором. [c.436]

    Ионные кристаллические решетки, в узлах которых чередуются положительные и отрицательные ионы, характерны для соединений элементов, сильно отличающихся по электроотрицательности. Представителями этого типа веществ являются фториды щелочных металлов. Как и в атомных решетках, в ионных кристаллах нельзя выделить отдельные молекулы, весь кристалл можно рассматривать как одну гигантскую молекулу. Связи между ионами прочные, поэтому ионным соединениям свойственны высокие температуры плавления, малая летучесть, большая твердость, хотя обычно несколько меньшая, чем для веществ с атомной решеткой. [c.155]

    В таблице 5 (см. приложение) представлены значения изменения энтальпий сублимации АЯма, характеризующие прочность связи между атомами щелочных металлов в их кристаллической решетке М(к)=М(г), и энтальпии плавления АЯгэв М(к)=М(ж). Объясните, пбчему у лития наблюдается максимальное значение всех параметров. [c.159]

    Ионные кристаллические решетки, в узлах которых попеременно находятся положительные и отрицательные ионы, характерны для соединений элементов, сильно отличающихся по электроотрицательности. Типичными представителями этого класса веществ являются фториды щелочных металлов. Как и в случае атомных решеток, в ионных кристаллах нельзя выделить отдельные молекулы (нет преимущественного взаимодействия данного иона с каким-либо одним ионом противоположного знака) весь кристалл можно рассматривать как одну гигантскую молекулу. Связи между ионами прочны, поэтому ионным соединениям свойатвенны высокие температуры плавления, малая летучесть, большая твердость, хотя обычно несколько меньшая чем для веществ с атомной решеткой. Следует обратить внимание на два обстоятельства. Во-первых, твердость и тугоплавкость не обязательно связаны только с ионными силами. Твердость и тугоплавкость ионных соединений часто меньше, чем веществ с атомной решеткой. Во-вторых, многие ионные кристаллы содержат в своем составе мгюго-атомные ионы, такие, как 504 , N(V, [ u(NOg)4]2", [c.254]

    Сравнивая данные табл. 27.1 с соответствующими величинами для щелочных металлов (табл. 14.2), можно видеть, что радиусы атомов меди, серебра и золота меньше радиусов атомов металлов главной подгруппы. Это обусловливает значительно большую плотность, высокие температуры плавления и большие величины энтальпии атомизации рассматриваемых металлов меньшие по размеру атомы располагаются в решетке более плотно, вследствие чего силы притяжения между ними велики. [c.533]

    Щелочные металлы энергично взаимодействуют с водой, вытесняя из нее водород и образуя соответствующие гидроксиды. Активность взаимодействия этих металлов с водой возрастает по мере увеличения порядкового номера элемента. Так, литий реагирует с водой без плавления, иатрий — плавится, калий — самовозгорается, взаимодействие рубидия и цезия протекает еще более энергично. [c.127]

    Щелочные металлы обладают невысокими температурами плавления (табл. 6), малой плотностью и твердостью (некоторые из них легко режутся ножом). В химическом отношении они очень активны и являются сильными восстановителями. [c.50]

    Гидроксиды Э(ОН)2 образуются из оксидов с меньшим выделением энергии, чем шдроксиды щелочных металлов ЭОН из Э2О, это объясняется большей энергией образования кристаллических структур ЭО. Поэтому Э(ОН)2 термически менее стабильны, они теряют воду до плавления (дегидратация оксидов щелочных металлов до плавления наблюдается только у LiOH). [c.333]

    Получение щелочных металлов на твердом металлическом катоде практически невозможно ввиду большого различия потенциалов (<р —<2,71 в, Фн(рН=14)= —0,81 в). Однако выделение щелочных металлов из водных растворов осуществляется с применением жидкого ртутного катода. Напр ИЙ, растворяющийся в ртути, образует химические соединения Hg Na (плавление 154°) и HgzNa (плавление 353°). Потенциал амальгамы в водно.м 1-я. растворе Na l или NaOH равен [c.40]


Смотреть страницы где упоминается термин Щелочные металлы плавления: [c.570]    [c.434]    [c.129]    [c.145]    [c.294]    [c.316]    [c.210]    [c.151]    [c.131]    [c.57]    [c.98]    [c.161]    [c.135]    [c.412]   
Физическая химия Книга 2 (1962) -- [ c.192 , c.245 , c.578 ]




ПОИСК





Смотрите так же термины и статьи:

Металлы плавление



© 2025 chem21.info Реклама на сайте