Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Щелочные металлы выделение

    Эталоны определяемых элементов разделяют на той же колонке после разделения щелочных металлов, выделенных из образца. [c.100]

    Разделение щелочных металлов, выделенных в ходе группового хроматографического разделения активированных примесей в отдельную группу, может быть осуществлено на неорганическом ионообменнике — вольфрамате циркония. Активности Na, К, Rb и s измеряют затем либо на Y-спектрометре, либо на -счетчике. В случае измерения -активности чувствительность определения Na — 3 10- %. К — 6 10- %, Rb — 1,3-10" %, s — 1,5-10- % (поток 10 нейтр/см сек, время облучения 24 часа). [c.99]


    И связанного с этим уменьшения потенциала пары 2Н+/Н2 предупредить выделение водорода при электролизе можно также, проводя электролиз с ртутным катодом. Перенапряжение водорода на ртути особенно велико (около —1 в), поэтому применение ртутного катода дает возможность количественно выделять многие металлы, которые нельзя осадить на платине вследствие выделения водорода. Другое преимущество ртутного катода заключается в том, что выделяющиеся металлы образуют с ртутью амальгамы— разбавленные растворы этих металлов в ртути, и значительно меньше переходят в раствор (т. е. окисляются), чем эти же металлы в чистом виде. Вследствие этого на ртутном катоде можно выделить (при низкой концентрации Н+-ионов) даже щелочные металлы. Большое значение имеет применение ртутного катода для отделения Ре + и ряда других катионов от А1 +, Цз+ и т. д. [c.436]

    Выделение водорода по схеме (19.8) — (19.9) наиболее вероятно при электролизе щелочных растворов или концентрированных растворов солей щелочных металлов и на катодах с высоким перенапряжением водорода (ртуть, свинец и др.). На внедрение щелочных металлов в катоды из свинца и кадмия указывают некоторые факты, установленные при изучении процессов электровосстановления органических соединений. Для металлов с низким перенапряжением водорода вторичное выделение водорода представляется менее вероятным. Однако некоторые исследователи полагают, что и при образовании водорода на платиновых катодах вся совокупность опытных данных лучше всего объясняется схемой (19.8) —(19.9). [c.396]

Рис. 19.2. Зависимость перенапряжения при выделении водорода от pH раствсра в условиях, не осложненных разрядом ионов щелочных металлов при двух разных плотностях тока Рис. 19.2. <a href="/info/386039">Зависимость перенапряжения</a> при <a href="/info/10559">выделении водорода</a> от pH <a href="/info/1793851">раствсра</a> в условиях, не осложненных разрядом <a href="/info/366991">ионов щелочных металлов</a> при <a href="/info/1696521">двух</a> <a href="/info/386272">разных плотностях</a> тока
    Сильная поляризация наблюдается на металлах (платина, золото, ртуть), в растворах солей щелочных металлов, например на ртутном электроде, который опущен в 0,1 н. раствор хлористого калия, тщательно очищенный от кислорода и других окислителей. Ртуть практически не отдает своих ионов раствору, а отсутствие ионов ртути в растворе делает невозможным и выделение их на электроде. Выделение водорода из нейтрального раствора возможно лишь при значительном отрицательном потенциале электрода. Выделение калия из 0,1 н. раствора требует еще большего отрицательного потенциала (ф = —2,983 в). [c.612]


    Г. е. разряжаются ионы гидроксония. В растворах щелочей также происходит разряд ионов гидроксония, а не ионов щелочного металла. Однако вследствие незначительной концентрации Н3О+ при большой силе тока, переносимого главным образом ионами щелочных металлов, не может быть обеспечен подход к электроду достаточных количеств ионов гидроксония и выделение значительных количеств водорода. По-видимому, в щелочи водород выделяется путем непосредственного разложения молекул воды, адсорбированных на электроде  [c.616]

    Ранее предполагали, что выделение водорода из растворов щелочей и солей щелочных металлов происходит по другой схеме, например для КОН, aq  [c.616]

    При нагревании все карбонаты, кроме солен щелочных металлов, разлагаются с выделением СО2. Продуктами разложения в большинстве случаев являются оксиды соответствующих металлов, например  [c.439]

    Хелаты типа ион щелочного металла/краун представляют особый интерес при обсуждении МФК. Другие родственные явления, например введение анионов в криптаты [88], растворение щелочных металлов в различных растворителях с помощью краунов i[89], выделение устойчивой кристаллической соли Ыа-/криптат Na+ 90] и образование анион-радикалов из аро- [c.38]

    Вода реагирует со всеми щелочными металлами, причем реакция во всех случаях протекает бурно и с выделением тепла. Типичной реакцией этого типа является взаимодействие натрия с водой  [c.433]

    Потенциалы выделения щелочных металлов из расплавленных солеи правильно возрастают от Ь к Сз в соответствии с увеличением электроположительного характера металла в этом ряду. Почему этого порядка не наблюдается в водных растворах  [c.151]

    Гидриды щелочных металлов — сильные восстановители. С водой они энергично реагируют с выделением водорода  [c.302]

    Для селективного выделения Oj и HjS из смесей газов, содержащих в основном метан, в промышленном масштабе используют только полимерные мембраны или мембраны на основе блок-сополимеров. Перспективным вариантом этого процесса является мембранный катализ использование квази-жидких мембран, на поверхности которых материал мембраны (для СОз и HjS это щелочи или соли щелочных металлов) обратимо взаимодействует с выделяемым компонентом, облегчая [c.74]

    Усовершенствованием описанного метода является электрохимическое окисление. При электролизе насыщенных олефином водных растворов хлористого водорода или хлоридов щелочных металлов в анодном пространстве получается хлор, взаимодействующий с олефином с образованием хлоргидрина. В катодном пространстве хлоргидрин разлагается с выделением окиси олефина, водорода и хлора. [c.248]

    Это определило дальнейшие пути выделения данных кислот из нефти в виде солей щелочных металлов, которые впоследствии стали использовать в виде технических мыл. [c.304]

    За сравнительно немногими исключениями щелочные соли сульфокислот хорошо растворимы в воде растворимость понижается при введении в молекулу высокомолекулярных ароматических групп и повышается с увеличением числа сульфогрупп. Щелочные соли обычно выделяются из раствора путем высаливания их избытком какой-нибудь легко растворимой соли соответствующего щелочного металла. Более общий способ выделения соли сульфокислоты и щелочного металла заключается в нейтрализации продукта сульфирования известью или другим основанием, дающим нерастворимый осадок с ионом 804" с последующим отфильтровыванием и обработкой фильтрата карбонатом или сульфатом щелочного металла. Фильтрат, полученный от этой операции, упаривается, пока из него не начнет выкристаллизовываться щелочная соль сульфокислоты. Свинцовые соли и соли щелочноземельных металлов сульфокислот, вообще говоря, хорошо растворимы в воде, но соли изомерных кислот часто сильно различаются между собой по растворимости, что дает возможность разделять продукты сульфирования посредством фракционированной кристаллизации кальциевых, бариевых или свинцовых солей. [c.10]

    Нефтяные карбоновые кислоты, выделенные из машинного масла и содержащие в молекуле 15—21 атомов углерода, а также их соли щелочных металлов оказались отличными эмульгаторами. В их присутствии в водной среде образуются весьма стабильные эмульсии [8]. [c.260]

    Извлечение рения на Мансфельдском комбинате в ГДР. На этом предприятии сырьем для извлечения рения служат свинцово-цинковые возгоны после вальцевания пылей, полученных при шахтной плавке сланцев. Рений в них находится в составе Re20v и приводном выщелачивании переходит в раствор. Растворы содержат несколько десятых долей грамма в литре рения со значительным количеством сульфатов цинка, кадмия, щелочных металлов они также содержат таллий и иод [105]. Ранее из этих растворов рений извлекали по сложной схеме, предусматривающей упарку растворов с последующей кристаллизацией иодида таллия, а также сульфатов цинка и щелочных металлов, выделение меди и кадмия цементацией на цинковой пыли и осаждение рения вместе с тяжелыми металлами в виде сульфида. Ввиду сложности схемы [106] она была заменена новой (рис. 80), по которой рений извлекается экстракцией трибутилфосфатом [107]. [c.306]


    Цезий был открыт в 1860 г. Р. Бунзеном и Г. Кирхгоффом [1, 2] в воде Дюркгеймского минерального источника (Германия). В спектре солей щелочных металлов, выделенных из минеральной воды, Р. Бунзен и Г. Кирхгофф нашли вблизи голубой линии стронция две неизвестные голубые линии (455,5 и 459,3 нм). Цвет этих спектральных линий и дал повод обоим исследователям назвать новый элемент цезием (слово скз1ипг у древних римлян означало голубой цвет верхней части небесного свода ). Год спустя Р. Бунзен и Г. Кирхгофф открыли еще один неизвестный ранее элемент, названный ими рубидием. Изучая спектр гекса-хлороплатинатов щелочных металлов, осажденных из маточника после разложения одного из образцов лепидолита, Р. Бунзен и Г. Кирхгофф обнаружили две новые фиолетовые линии (420,2 и 421,6 нм), находящиеся между линиями калия и стронция, а также новые линии в красной, желтой и зеленой частях спектра. Среди всех этих линий для индентификации нового элемента исследователи выбрали две линии, лежащие в самой дальней красной части спектра (780,0 и 794,8 нм). По цвету этих спектральных линий новый элемент был назван рубидием (латинское слово гиЫйиз — темно-красный). [c.72]

    Б. Методы с жидким (ртутным) катодом, как уже было сказано в 14, принципиально отличаются от методов с твердым катодом тем, что в них вместо водорода и щелочи на ртутном катоде получается амальгама щелочного металла. Выделение натрия с образованием амальгамы возможно благодаря явлению деполяризации, т. е. снижению потенциала выделения натрия вследствие образования им химических (интерметаллических) соединений с ртутью типа NanHgm, обладающих меньшим запасом свободной энергии, чем металлический натрий. [c.62]

    За последние годы получены экспериментальные данные, подтверждающие господствовавший на заре формирования мектрохимической науки и отброшенный позднее механизм вторичного выделения водорода. Согласно этому механизму первичным актом является разряд ионов щелочного металла М+ с образованием соответствующего металла или его сплава с материалом катода  [c.396]

    Выделение водорода происходит за счет пс1следующег0 взаимодействия щелочного металла (его сплава или амальгамы) с частицами раствор11теля  [c.396]

    Сплавляя А1(0Н)з или AI2O3 со щелочами, получают высокомолекулярные метаоксоалюминаты. Их состав весьма разнообразен, о чем свидетельствует, например, рис. 188. В воде оксоалюминаты щелочных металлов легко гидролизуются, вплоть до выделения А1(ОН)д. [c.456]

    При разложении некоторых гидроперекисей наблюдалось выделение кислорода. Так в некоторых растворителях перекись m/iem-бутила разлагается меркаптобензимидазолом с выделением кислорода [62]. Гидроперекиси разлагаются также с выделением кислорода в присутствии таких добавок, как сукциннитрил, сероуглерод или щелочные металлы [68]. Выделение кислорода происходит, как полагают, в результате следующей реакции  [c.299]

    Как и в случае окиси этилена, здесь происходит разрыв связей С—О в кольцевой системе реагента. Аналогично реакции с окисью этилена, оксиалкилирование фенолов этиленкарбонатом протекает достаточно полно (т. е. с хорошими выходами продуктов), если в реакцию вводятся феноляты или свободные фенолы в присутствии карбонатов щелочных металлов Водные растворы щелочей здесь не используются, так как в них происходит быстрый гидролиз этиленкарбоната с выделением СОз, однако возможно применение спиртово-щелочных растворов с ограниченным содержанием спирта. 11ри избытке спирта быстро протекает реакция его переэтерифика-ции с этиленкарбонатом и оксиэтилированный продукт не образу ется . [c.35]

    В отличие от описанного способа щелочно-кислотного переосаждения, когда дифенилолпропан растворяется в растворе гидроокиси щелочного металла и осаждается затем кислотой, известен способ, по которому из щелочи добавлением солей осаждают производное дифенилолпропана и отделяют его фильтpoвaниeм Этот процесс основан на понижении растворимости динатриевых производных дифенилолпропана в растворах щелочей при добавлении растворимых солей сильных минеральных кислот (Na l), как отмечалось выше. Осажденное таким образом динатриевое производное отфильтровывают , промывают насыщенным раствором Na l и растворяют в воде в четырехкратном количестве), после чего добавляют кислотный оса-дитель для выделения свободного дифенилолпропана. Концентрация используемой щелочи обычно составляет 20% весовое соотношение дифенилолпропана и раствора гидроокиси натрия равно 1 4. При таком способе очистки продукт получается окрашенным и для его обесцвечивания водный раствор производного дифенилолпропана обрабатывают активированным углем. [c.165]

    Одним из наиболее простых является полимеризация диена на щелочном металле в среде полярного растворителя. Так как в полярном растворителе константы роста цепи одного порядка с константой инициирования, то при достаточном избытке щелочного металла возможно выделение первичных продуктов, содержащих 2—10 звеньев мономера. В качестве мономеров употребляют днолефнновые гл пинпларол атпчсские углеводороды. Для увеличения повер.хности щелочного металла его обычно используют в виде дисперсии в парафине или вазелине. Чем больше полярность растворителя, чем больше отношение металл мономер, тем меньше звеньев мономера содержит катализатор [2]. [c.413]

    ВОДЫ. Низшие аналоги боронатов связывают воды больше, чем боронаты с высшими алкильными заместителями. Однако нет сведений о том, что присутствие каталитических количеств воды или катионов щелочных металлов необходимо только при восстановлении карбонильных групп или оно требуется и при восстановлении других функциональных групп Кроме того, некоторые функциональные группы, по-видимому, образуют с реагентом рыхлые комплексы, которые с легкостью распадаются при обработке. Некоторые аммонийборонаты имеются в продаже, хотя и их цена относительно высока. Аммонийборонаты получают традиционным способом реакцией обмена и выделением путем осаждения [c.368]

    К веществам, вызывающим горение при воздействии на них воды, относятся металлические натрии и калий, карбид кальция, карбиды щелочных металлов, фосфористые кальций и натрий, гидраты щелочных и щелочноземельных элементов и др. Попадание на такие вещества воды крайне опасно. Например, карбид кальция при действии даже незначительных количеств влаги разлагается с выделением ацетилена. Реакция экзотермическая и протекает с больтинм выделсипсм тепла (выше 500—700 °С), что вызывает самовоспламсиепие образующегося ацетилена и может привести к взрыву. Щелочные металлы ири взаимодействии с водой окисляются, выделяя большое количество тепла, что вызывает самовоспламенение образующегося при этом водорода. В мелко раздробленном виде металлические калий и натрий воспламеняются на влажном воздухе. [c.53]

    Гидриды щелочных металлов имеют сосгав МеН, а щелочноземельных металлов МеНг. Эти гидриды содержат отрицательно заряженный гидрид-ион Н . Их обычное состояние кристаллическое. По виду они напоминают соли. В расплавленном состоянии и в некоторых растворах они могут быть подвергнуты электролизу, причем на катоде выделяется металл, а на аноде — водород. Гидриды щелочных и щелочноземельных металлов легко разла-гакпся водой и кислотами с выделением водорода, например  [c.123]

    Для выделения серебра из руд, в которых оно находится и виде нерастворимых в воде соединений, используется циаиидный метод. Прп обработке цианидом щелочного металла сульфид и хлорид серебра переходят в водорастворимый дициано-(1)аргентат калия или натрия. Из последнего серебро выделяют посредством восстановления цинковой пылью. [c.327]

    Они подобно нафтенам имеют ясно выраженный предельный характер. Можно считать установленным, что нафтеновые кислоты, выделенные из низкокипящих нефтяных фракций, принадлежат к моноциклическим соединениям, одноосновны и в большинстве имеют пятичленное кольцо. По химическим свойствам это типичные карбоновые кислоты. При нейтрализации их легко образуются разнообразные соли, из которых соли щелочных металлов полностью растворимы в воде. Карбоновые кислоты, начиная с С13, выделенные из высококипящих фракций нефти, принадлежат цреимущественно к соединениям, у которых основное ядро является би- и нолициклическим. [c.446]

    Ди-н-пропилсульфат бурно реагирует со спиртовым раствором едкого кали, образуя этил-к-пропиловый эфир [460]. С фенолятом натрия с выходом 66% дает фенил-н-пропиловый эфир [321, 462]. Нагревание ди-м-пропилсульфата при 170° ведет к его разложению и выделению пропилена, а также некоторого количества сернистого ангидрида и других продуктов. Пропилен при разложении получается с выходом 38%. С перекисями щелочных металлов [461] ди-м-пропилсульфат реагирует с образованием неустойчивой гидроперекиси пропила, выделенной в виде бариевой соли с ацетилени-дом натрия дает к-пропилацетилеп [321]. [c.81]

    Эта реакция позволяет выделить кислоты из нефтяных фракций. Соли щелочных металлов этих кислот, хорошо растворимые в воде, полностью переходят в водно-щелочной слой. При подкис-лении этого раствора слабой серной кислотой нефтяные кислоты регенерируются, ваплывают и таким образом могут быть отделены. Однако при этом в большом количестве захватываются и нейтральные масла (от 10 до 60%). Для выделения нефтяных кислот в чистом виде применяются различные методы очистки. Многие соли нафтеновых кислот ярко окрашены. Все они обладают бактерицидным действием. [c.34]


Смотреть страницы где упоминается термин Щелочные металлы выделение: [c.435]    [c.134]    [c.400]    [c.28]    [c.616]    [c.316]    [c.516]    [c.149]    [c.238]    [c.339]    [c.391]    [c.208]    [c.287]   
Современная неорганическая химия Часть 3 (1969) -- [ c.2 , c.262 ]




ПОИСК





Смотрите так же термины и статьи:

Металлы выделение из руд



© 2024 chem21.info Реклама на сайте