Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Решетка атомная

    Атомные решетки. В кристаллических решетках атомного типа каждый узел пространственной решетки представлен нейтральным атомом. Все атомы размещены на одинаковом расстоянии друг от друга. Число близлежащих атомов, окружающих кал<дый атом, равно максимальной валентности данного элемента. Атомную структуру имеют алмаз, графит, твердый кремний [51]п, твердый бор [В]п, карборунд 51С, германий и др. На рис. 18 изображены атомные кристаллические решетки алмаза и графита. Как видно из рис 18, а, атомы углерода в алмазе располагаются по узлам двух кубических решеток, вставленных одна в другую. Каждый атом углерода непосредственно соединен с четырьмя другими на довольно близком одинаковом расстоянии. Расстояние между центрами соседних атомов углерода 1,54 А, что обусловливает большую плотность и наибольшую твердость кристалла алмаза, отсутствие свобод- [c.73]


    Укажите, какая кристаллическая решетка (атомная, молекулярная, ионная, металлическая) реализуется в следующих твердых веществах  [c.58]

    Чем отличаются вещества с кристаллической решеткой молекулярного типа от веществ с кристаллической решеткой атомного типа (примеры)  [c.51]

    Элементарные металлоиды — вещества, построенные из атомов промежуточных элементов. Характеризуются прочными кристаллическими решетками атомного типа (преимущественно нелетучи и тугоплавки) и наличием полупроводниковых свойств. [c.36]

    Между различными классами элементарных веществ нет резких границ, и многие элементарные вещества обладают промежуточными свойствами. Так, например, узлы кристаллической решетки металла галлия образованы не положительно заряженными ионами, а двухатомными молекулами низкотемпературное видоизменение олова характеризуется кристаллической решеткой атомного типа и наличием полупроводниковых свойств эти свойства обнаруживаются в твердом состоянии у таких элементарных окислителей, как селен и астат белое видоизменение металлоида фосфора характеризуется летучестью, и непрочностью кристаллической решетки молекулярного типа элементарные металлоиды висмут и полоний обладают металлической электропроводностью. Таким образом, границы между элементарными металлами и металлоидами и между элементарными металлоидами и окислителями до известной степени условны. [c.37]

    Кремний. В большинстве соединений кремний находится в степени окисления ( + IV), значительно реже ( — IV). В свободном виде кремний Si-темно-серое кристаллическое вещество, очень твердое, хрупкое и тугоплавкое. Кристаллическая решетка-атомная, связи Si—Si очень прочные, химическая активность кремния мала. В особых условиях можно получить так называемый аморфный кремний в виде белого порошка, его реакционная способность выше. [c.152]

    Таким образом, к центральному в катализе вопросу подбора катализаторов мультиплетная теория позволяет подойти с двух сторон с точки зрения структурного соответствия и с точки зрения энергетических расчетов. Как возможный катализатор дегидрирования циклогексана медь удовлетворяет всем требованиям структурного соответствия. Медь кристаллизуется в гранецентрирован-ной кубической решетке, атомный диаметр ее (2,56-К) см) лежит в интервале атомных диаметров таких активных катализаторов дегидрирования, как платина (2,77-10 см) и никель (2,49- 10 см). Между тем медь чрезвычайно малоактивный катализатор дегидрирования циклогексана. Малая активность меди связана с тем, что энергия связи медь — углерод низка. Это приводит к значительному потенциальному барьеру реакции и низкой скорости процесса. [c.82]


    Образование таких структур в кристаллах с координационными решетками (атомными, ионными или металлическими) нарушает сте-хиометрический состав вещества — образуются соединения переменного состава. [c.136]

    В двухатомных кристаллах с кубической решеткой (атомной или ионной) 3 тоже может быть положено равным нулю. Таким образом, для аморфных веществ и некоторых диэлектриков с кубической решеткой [c.273]

    Ковалентные связи существуют и в атомных кристаллических решетках. Атомные решетки образуются у относительно немногих веществ в твердом состоянии. Типичным примером атомной решетки служит алмаз—одна из форм существования в свободном виде элемента углерода (рис. 23). В атомной решетке алмаза каждый атом углерода связан четырьмя ковалентными связями (см. белые кружки на рисунке), т. е. он образует четыре общих электронных пары с четырьмя соседними атомами углерода. Поэтому алмаз н все другие вещества, имеющие атомную кристаллическую решетку, например 51С и В<С, отличаются большой твердостью и очень высокими температурами плавления и кипения. Такие вещества часто объединяют групповым названием алмазоподобные еещества. [c.114]

    Несмотря на большие успехи в области теории гетерогенного катализа, подбор катализаторов пока осуществляется в основном эмпирическим путем. Важных в практическом и теоретическом отношении результатов можно ожидать от изучения каталитических свойств редких и малоисследованных элементов. В этой связи известный интерес представляет систематическое исследование рутения, каталитические свойства которого изучены до настоящего времени совершенно недостаточно. Число работ, касающихся применения рутениевых катализаторов для гидрирования и дегидрирования органических соединений, весьма невелико [1—13]. Вместе с тем известно, что свойства этого элемента, а именно тип решетки, атомный радиус, электронное строение, адсорбционные свойства и т. д. [13—17], дают основание предполагать, что рутений может оказаться весьма активным катализатором гидрирования. Исследование каталитических свойств рутения представляется нам важным также и потому, что он в настоящее время производится в достаточно больших количествах [18]. [c.416]

    Мольное отношение суммы двухвалентных катионов к трехвалентным равно /2, т. е. в формуле 04 у у = 0. В этом случае тип дефектов определяется исключительно собственным разупорядочением решетки (атомным или электронным). [c.137]

    Объемноцентрированная кубическая решетка атомный радиус 1,56 Гексагональная плотноупакованная решетка атомный радиус 1,05 А, [c.49]

    Прочность обычных поликристаллических материалов (порошков, покрытий, сплавов и т. п.) всегда значительно ниже теоретической из-за наличия дефектов кристаллической решетки атомных масштабов (дислокаций), а также трешин, включений, ступенек на поверхности и т. д. [412, 425, 426]. [c.229]

    В газообразном состоянии все эти вещества имеют молекулярную структуру. В твердом состоянии она сохраняется лишь у кислорода. Твердый натрий имеет решетку мета.тлического типа, твердые углерод и бор — решетку атомного типа, твердый хлорид натрия — ионного типа. Оксид азота (V) и хлорид фосфора (V) в твердом со- [c.253]

    Все галогены в твердом состоянии имеют решетку молекулярного типа. Различная температура плавления их обусловлена различием в энергии вандерваальсовского взаимодействия. Простые вещества элементов II периода различаются типом решетки металлическая у лития и бериллия, атомная у бора и углерода, молекулярная у азота, кислорода, фтора и неона. Вещества с молекулярной решеткой имеют низкие температуры плавления. Самые высокие температуры плавления у веществ с решеткой атомного типа. [c.254]

    Например, в случае кубической объемно-центрированной решетки атомный полиэдр представляет собой тело, каждая грань которого перпендикулярна радиусу-вектор -, соединяющему данный атом с его восемью соседями, и делит это расстояние пополам. Это заставляет при расчете распределения энергии в пределах электронных полос металлической меди, образующей кристаллическую решетку этого типа, искать решения поставленной задачи, используя восемь атомных функций (одну -функцию, три р- и четыре -функции), описывающих состояние валентных электронов свободных атомов этого вещества. Рассматриваемая система уравнений будет иметь не тривиальное решение лишь в том случае, если ее главный детерминант окажется равным нулю. Члены этого детерминанта являются функциями волнового вектора к и значений выбранных атомных функций и их производных в центрах граней полиэдра. Решение уравнения определяет характер зависимости энергии валентных электронов металла в пределах атомного полиэдра от направления волнового вектора А . Окончательное соотношение = / к), как правило, не может быть выражено аналитически и представляется обычно в виде численных таблиц, полученных в результате громоздких, длинных и утомительных вычислений, пригодных для отдельных металлов. [c.24]

    Рассмотрим прохождение через кристалл пучка рентгеновских лучей с длиной волны Л (рис. 1.71). Ввиду значительной проникающей способности рентгеновского излучения большая часть его проходит через кристалл. Некоторая доля излучения отражается от плоскостей, в которых расположены атомы, составляющие кристаллическую решетку (атомные плоскости рь Pi, Рз, Ра). Отраженные лучи интерферируют друг с другом, в результате чего происходит их взаимное усиление или погашение. Очевидно, что результат интерференции зависит от разности хода O лучей, отраженных от соседних параллельных плоскостей. Усиление излучения происходит в том случае, когда 8 равно целому числу длин волн, тогда отраженные волны находятся в одинаковой фазе. Как видно из рис. 1.71, луч Si, [c.151]


    Диффузия газов возможна и в плотных материалах — сквозь кристаллическую решетку или по границам зерен в решетке (атомно-ионная диффузия). Как известно, существует несколько механизмов атомно-ионной диффузии. [c.263]

    Атомные кристаллические решетки построены из атомов, связанных ковалентными связями. Кристаллические тела с решетками атомного типа имеют высокую температуру плавления и твердость. Представители этого типа сравнительно немногочисленны алмаз, кремний и некоторые другие неорганические соединения. [c.29]

    В сплавах — фаза, представляющая собой нреим. низкотемпературный твердый раствор. В сплавах на основе мономорфных хим. элементов (нанр., в сплаве медь — цинк) А.-ф. образуется из расплава. В сплавах на основе полиморфных хим. элементов (напр., в сплаве марганец — кремний) А.-ф. образуется преим. при понижении т-ры из бета-фазы (рис.), за исключением сплавов на основе железа, где образуется из гамма-фазы (см. Диаграмма состояния железо — углерод). Концентрационный интервал существования А.-ф. зависит гл. обр. от электронной структуры, тина кристаллической решетки, атомного диаметра, валентности и т-ры плавления исходных компонентов. Если компоненты обладают близкими физико-хим. св-вами и имеют идентичную кристаллическую структуру. [c.53]

    Если в веществе все атомы (С, 51 и т. п.) или небольшие группы атомов, представляемые простейшей формулой вещества (5102, ВМ, ВеРз и пр.), способны образовывать четыре химические связи с четырьмя идентичными им соседями, то вещество в твердом состоянии существует в виде атомных кристаллов. Весь объем вещества как бы пронизан густой трехмерной решеткой атомных связей, и в нем невозможно выделить каких бы то ни было отдельных участков — островков, цепей или слоев. В этом случае, по-видимому, не имеет смысла говорить ни о молекулах, ни о макромолекулах-такого вещества. [c.144]

    Физические и химические свойства. Г.—серебристобелый металл, существует в двух криста,ллич. полиморфных модификациях. При обычной темн-ре устойчива гексагональная плотнейшая упаковка с периодами решетки а=3,1946 A и с=5,0511 A выше 1950 100° устойчива кубич. объемпопентрированная решетка. Атомный радиус Г. 1,59 А иоиный радиус Hf 0,75 А. Плотность Г. 13,09 при 20° т, пл. 2222 i 30° т. кип. 5400° атомная теплоемкость 6,27 кал/г-атом град (25—100°). Для Г. высшей степени чистоты электропроводность составляет 6% электропроводности меди уд. электрососгротивление [c.405]

    Вещества, построенные из атомов промежуточных элементов, — элементарные металлоиды (бор, углерод, кремний, фосфор, германий, мышьяк, сурьма, теллур). Характеризуются проч-ггымн кристаллическими решетками атомного типа (преимущественно нелетучи и тугоплавки) и наличием полупроводниковых свойств. [c.111]

    Физические и химические свойства. Хотя олово и свинец и представляют собой металлы, в свободном состоянии типичные для металлов свойства выражены у них довольно слабо. Кристаллическое олово существует в разных полиморфных видоизменениях. Низкотемпературное видоизменение, называемое серым оловом, характеризуется кристаллической решеткой атомного, т. е. неметаллического, 1нпа. Видоизменение, называемое белым оловом, устойчивое п])н телятературе выше 13,2°С, характеризуется кристаллической решеткой металлического типа. Видоизменения олова сильно отличаются друг от друга по плотности — серое олово имеет значительно меньшую плотность (5,75 г/см ). В связи с этим при охлаждении обычное белое олово переходит в серое, наблюдается значительное увеличение объема и разрушение оловянных изделий (наиболее ннтенсивгюе нри сильных морозах ниже — 30°С). Значения физических свойств олова и свинца ириведены в табл, 41. [c.340]

    Рассматривая ответы учащихся на вторые вопросы обоих вариантов задапай, подчеркивают такие черты сходства в строении алмаза и графита, как наличие в их кристаллических решетках атомных связей. У алмаза кристаллическая решетка типично атомная, тетраэдрическая, у графита между атомами углерода, расположенными в одной плоскости, атомные связи, а между атомами углерода разных плоскостей связи, похожие на металлическую. Электроны, осуществляющие такие связи, находятся в общем пользовании не двух атомов, а всех атомов данного слоя. Таким отличием в строении алмаза и графита объясняется отличие в свойствах этих двух веществ. Подобно металлам, графит имеет серый цвет, обладает слабым металлическим блеском, электрической проводимостью. Однако графит отличается от алмаза и такими свойствами, как мягкость, способность отщеплять с поверхности плоские чешуйки, разделяться на атомные слои. Это свойство графита не может бьпь объяснено металлическим характером связей между атомными слоями, так как металлические связи весьма прочны. Исследование внутренней структуры графита показало, что слои атомов в нем удалены друг от друга на значительно большее расстояние, чем атомы в одном слое. Можно считать, что в отличие [c.133]

    Какого типа решетку, атомную, молекулярную или ионную, имеют в твердом состоянии криптон, диоксид углерода, тетрахлорид углерода, кремний, карбид кремния, фторид калия, 1П1трид бора  [c.33]


Смотреть страницы где упоминается термин Решетка атомная: [c.111]    [c.346]    [c.168]    [c.333]    [c.38]    [c.38]    [c.212]    [c.185]    [c.286]   
Общая химия в формулах, определениях, схемах (1996) -- [ c.78 ]

Общая химия в формулах, определениях, схемах (0) -- [ c.78 ]

Общая химия в формулах, определениях, схемах (1985) -- [ c.78 ]

Общая химия в формулах, определениях, схемах (0) -- [ c.78 ]

Общая химия ( издание 3 ) (1979) -- [ c.140 ]

Общая и неорганическая химия (1959) -- [ c.111 ]

Физическая и коллоидная химия Издание 3 1963 (1963) -- [ c.100 ]

Введение в физическую химию и кристаллохимию полупроводников (1968) -- [ c.85 , c.309 ]

Введение в физическую химию и кристаллохимию полупроводников Издание 2 (1973) -- [ c.529 , c.530 ]

Общая химия (1968) -- [ c.118 ]




ПОИСК





Смотрите так же термины и статьи:

Алмаз атомная решетка

Атомные и молекулярные решетки. Межмолекулярные силы

Атомные решетки поверхностей твердых тел

Графит атомная решетка

Дефекты атомные влияние на параметр решетки

Ковалентные связи в молекулах и атомных кристаллических решетках

Кристалл с атомной решеткой

Кристаллическая решетка атомная молекулярная

Кристаллические решетки атомные

Основные типы кубических структур. Атомные радиусы, плотность упаковки, координационные числа в металлических решетках и в алмазе. Гексагональная плотная упаковка

Пространственная решетка атомная

Рассеивающий фактор атомный для трехмерной решетки

Расчет удельной полной и удельной свободной поверхностной энергии атомных решеток и термодинамический ряд их твердостей

Рентгеновское рассеяние от двумерной периодической атомной решетки

Рентгеновское рассеяние от трехмерной атомной решетки

Решетка атомная гранецентрированные деформация

Решетка атомная металлическая

Решетка атомно-молекулярная

Решетка кристаллическая атомная, ковалентные связи

Решётки атомные устойчивость

Решётки атомные центрированной

Спектрометр атомно-абсорбционный дифракционная решетка

Спектрометр атомно-эмиссионный дифракционная решетка



© 2025 chem21.info Реклама на сайте