Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Коэффициент давления на межфазной границе

    На первом уровне рассматриваются процессы, протекающие в единичном структурном элементе — поре — с учетом ее реальных геометрических характеристик и их влияния на процессы переноса. Элемент характеризуется коэффициентами переноса, константами скорости химических реакций, адсорбции, энергиями активации, условиями возникновения межфазных границ и т. д., для него должны быть определены внешние условия — температура, давление, концентрации исходных веществ и продуктов и др. В средах с неоднородной пористой структурой, характеризующейся распределением пор по размерам, учитывается также влияние неравномерности распределения размеров пор на характер протекающих в них процессов. [c.141]


    По мере того как развивалась теория газовой хроматографии и выяснялись зависимости хроматографических характеристик анализируемых веществ, адсорбентов и жидких неподвижных фаз от их физико-химических свойств, стало возможно не только предсказывать параметры хроматографического разделения на основе термодинамических и кинетических характеристик, но и подойти к решению обратных задач — определению физико-химических параметров по данным, получаемым при помощи газовой хроматографии [I—3]. Наибольшее значение газовая хроматография приобрела для определения термодинамических характеристик. Газо-адсорбционную хроматографию широко используют для измерения изотерм адсорбции. Из данных по изменению величин удерживания с температурой можно вычислять также энтропию и свободную энергию адсорбции. На основе хроматографического изучения адсорбции удается исследовать характер взаимодействия молекул адсорбата и адсорбента. Газо-жидкостная хромато рафия позволяет путем определения величин удерживания вычислять растворимость, теплоту и энтропию процесса растворения, а также измерять давление пара и температуру кипения анализируемых веществ, рассчитывать константы равновесия реакций в растворах и в газовой фазе и определять коэффициенты адсорбции на межфазных границах (жидкость—газ, жидкость—жидкость, жидкость—твердое тело). [c.223]

    В этой статье я хочу показать, что методы, предложенные Гиббсом для статической межфазной поверхности, можно распространить на движущиеся межфазные поверхности. При этом неизбежно вводятся новые макроскопические свойства двухфазной системы. Например, статическая объемная жидкость может быть термодинамически описана такими свойствами, как плотность, гидростатическое давление, внутренняя энергия и т. д. Но если жидкость движется, мы должны ввести также параметры, которые описывали бы скорости переноса массы, импульса и энергии. Они появляются в теории объемных жидкостей как коэффициенты диффузии, вязкости и теплопроводности. Подобным же образом, если наша система состоит из двух жидких фаз, можно ожидать, что у переносов массы, импульса и энергии в окрестности границы фаз появятся особенности, суть которых нельзя предсказать, зная коэффициенты переноса, справедливые только внутри объемных фаз. [c.41]

    Приведенные выше выражения для силы сопротивления, испытываемой частицей при медленном движении в вязкой жидкости, справедливы при условии, что частицы твердые. На практике имеют дело не только с твердыми, но и с жидкими и газообразными частицами — каплями и пузырьками. Такие частицы в потоке несущей жидкости могут деформироваться под действием неоднородных полей скоростей и давлений внешнего и внутреннего течения жидкости или газа. Особенно заметна деформация относительно крупных частиц, а также частиц, находящихся в потоке возле границы области течения — стенок, межфазных поверхностей, где значительны изменения скорости потока на расстояниях, сравнимых с размером частиц. Если жидкие или газообразные частицы находятся близко друг от друга, то относительное движение частицы вызывает гидродинамическую силу сопротивления, зависящую от расстояния между их поверхностями. В частности, при сближении частиц по линии центров, сила сопротивления при малых зазорах 5 между поверхностями возрастает как 1/5 , где а = 1 для твердых частиц и а = 0,5 для жидких частиц [7]. Степень деформации частиц определяется модифицированным капиллярным числом Са = р.(,С/йЬ/(а-ь Ь) I [9], где ц, — вязкость несущей жидкости V — скорость сближения капель радиуса д и Ь X — коэффициент поверхностного натяжения капель. При Са 1 деформация капель мала. [c.168]


    Эти авторы измеряли также прочность при сдвиге, предел текучести и сравнивали величину их отношения с наблюдаемым значением коэффициента 5 для политетрафторэтилена, политрифторхлорэтилена и поливинилхлорида, поливинилиден.хлорида и полиэтилена. Во всех случаях, за исключением политетрафторэтилена получали хорошее соответствие между величинами и 5/Р, они отличались не более чем в 2 раза четверть всех исследованных полимеров давала величину рз, большую, чем З/Р. Наилучшее согласие было получено для полиэтилена ( 15 = 0,33 и 5/Р = 0,31). Это наводит на мысль, что если благодаря высоким местным давлениям прочность возникающих зон схватывания увеличена, сдвиг при скольжении происходит в объеме, а не на межфазной границе с полиэтиленом. Было обнаружено также, что пленки полиэтилена, перешед- [c.312]

    К уравнению (2.43) необходимо сделать два замечания. Первое уравнение (2.12) можно рассматривать как результат интегрирования уравнений (2.43) по координате при стационарном переносе и условии, что Lij не зависят от координаты. В этом случае коэффициенты Lij в уравнениях (2.12) и (2.43) одни и те же. будут зависеть от координаты, если будут значительными перепады концентрации и давления на мембране (зависимость локальных Lij от С/ и р в макрооднородной мембране), либо если мембрана макронеоднородна размер неоднородностей будет сравним с толщиной мембраны (слоистая, мозаичная мембрана и т.п.) или имеется градиент концентрации фиксированных ионов. Связь между локальными и интегральными коэффициентами проводимости можно при этом установить, если известна зависимость локальных L j от концентрации виртуального раствора и координаты. Второе в силу предполагаемого условия термодинамического равновесия на внутренних межфазных границах разность электрохимических потенциалов в уравнениях [c.81]

    Преимуществами сточной воды АО Искож перед промысловыми сточными водами являются отсутствие в ней нефтепродуктов, повышенное значение pH, наличие растворенных ПАВ, снижающих межфазное натяжение на границе вода — нефть, отсутствие коррозионно-активных компонентов, таких, как СОз и НзЗ. Для сравнения приведем данные о содержании нефтепродуктов в промысловых сточных водах Арланского месторождения, используемых в системе поддержания пластового давления. По данным анализов вод, проводимых ЦНИПРом НГДУ Арланнефть , содержание нефти и нефтепродуктов в сточных водах меняется от 40 до 160 мг/л. Такое высокое содержание в водах диспергированной нефти является одной из главных причин снижения приемистости водонагнетательных скважин. Поэтому значительный объем работ выполняется по восстановлению приемистости скважин, что удорожает добычу нефти. Кроме того, легко доказать, что снижение приемистости водонагнетательных скважин сопровождается уменьшением коэффициента охвата пласта воздействием. [c.348]

    Интересно отметить, что расчеты равновесия без учета упругих полей дают достаточно хорошие совпадения р-Г-параметров синтеза при использовании расплавов некоторых металлов переходных групп (на необходимость их применения указывалось еще в работе [16]). Хотя в данном случае речь должна идти не о фазовом превращении графита в алмаз, а о перекристаллизации графита в алмаз. Такое совпадение неудивительно, ведь в расплавах металлов, называемых обычно катализаторами-растворителями, ДСдеф мало. В этом случае при росте кристаллов путем встраивания атомов (молекул) в изломы (за счет атомарной и кинетической шероховатости) химический потенциал частицы в кристалле равен ее химическому потенциалу в растворе. Поэтому при использовании графита в качестве шихты р-Г-параметры области равновесия (индивидуальные для каждого типа расплава) должны быть близки к расчетным значениям в классическом приближении. Однако также хорошо известно, что при понижении температуры (и давления) ниже определенной величины (<1400— 1300 К) никакого совпадения в экспериментальных и расчетных данных не наблюдается, так как число зародышей резко уменьшается и рост алмаза фактически прекращается. Несомненно, в этом случае начннают сказываться такие факторы, как химические и структурные характеристики расплава. О том, насколько важную роль играет структура расплава, свидетельствуют эксперименты по введению в систему роста металлов, слабо взаимодействующих с углеродом, Sb, Sn, Ge, Си. На основании экспериментов можно сказать, что ни изменением относительных растворимостей графита и алмаза, ни изменением поверхностной межфазной энергией (A s) нельзя объяснить экспоненциальный рост порогового давления, начиная с определенных концентраций этих добавок. Ясно, что при расчете области равновесия графит — раствор углерода необходимо учитывать такие факторы, как относительные растворимости и межфазные энергии границ этих фаз, степень отклонения раствора в расплаве от идеального, степень его упорядочения, коэффициенты активности и конфигурации активационных комплексов и др. [c.309]

    Образование переходного слоя может рассматриваться как возникновение третьей фазы в смеои вследствие локальной диффузии на границе раздела и других причин. Действительно, наличие такого слоя обнаружено методами ДТА [414] и радиотермолюминесценции [415] для смесей эластомеров. Для композиции на основе двух кристаллических полимеров метод радиотермолюминесценции был применен авторами работы [416]. Исследование смеси полиэтилена низкого давления с сополимером формальдегид — диоксолан в широком диапазоне составов показало, что при малых добавках сополимера (до 2%) максимум свечения, отвечающий температуре стеклования ПЭ, смещается в сторону более низких температур, а в области 5—40% сополимера положение максимума остается постоянным. При малых добавках ПЭ к сополимеру (до 1%) также наблюдается сдвиг максимума, характерного для сополимера. Добавки 10% сополимера к ПЭ и 5% ПЭ к сополимеру приводят к появлению в системе новых максимумов. Полученные данные указывают на то, что при смешении кристаллических полимеров происходят структурные изменения в межфазных областях, обусловленные взаимодействием компонентов в пределах аморфных областей. При малых добавках наблюдается один смещенный пик свечения. При повышении содержания второго компонента образуются две аморфные фазы, что приводит к появлению двух смещенных температур стеклования. Как видно, взаимное влияние компонентов в смеси может приводить к тому, что 7 с одного полимера в смеси с другим повышается по сравнению с наблюдаемой для чистого полимера (ПС в смеси с ПБ, ПВА, ПВХ и др.). Во всех исследованных случаях ПС преобладал в смеси, т. е. является непрерывной фазой. Величина смещения Тс зависит от природы компонентов и возрастает с ростом разности коэффициентов термического расширения [417, 418]. [c.205]


    Межфазное натяжение на фанице жидкость— жидкость. Для определения коэффициента межфазного натяжения на границе жидкость — жидкость применихма та же экспериментальная техника, что и для границы жидкость — газ. На рис. 23 показа-, на схема установки для измерения коэффициента межфазного натяжения методом максимального давления. Жидкость А наливают в трубку, один конец которой погружен в жидкость В. Минимальная высота жидкости А в трубке, при которой отрываются капли, соответствуют определенному межфазному натяжению. Работами ряда исследователей было показано, что метод капиллярного поднятия и методы покоящихся капель также дают точные результаты. [c.56]


Смотреть страницы где упоминается термин Коэффициент давления на межфазной границе: [c.15]    [c.211]    [c.403]    [c.155]    [c.57]    [c.169]    [c.40]    [c.108]   
Тепло- и массообмен Теплотехнический эксперимент (1982) -- [ c.106 ]




ПОИСК





Смотрите так же термины и статьи:

Межфазные



© 2025 chem21.info Реклама на сайте