Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Скорость коррозии, единицы

    Интенсивность процесса эрозии, определяемая как убыль массы металла с единицы его поверхности в единицу времени, обычно растет с ростом скорости потока. В табл. 9.2 показано влияние скорости потока морской воды на скорость эрозии некоторых металлов и сплавов. Из таблицы следует, что наиболее чувствительны к увеличению скорости потока сплавы меди в случае чугуна и углеродистой стали влияние скорости потока уменьшается, а для сплавов никеля оно совсем мало. Титан стоек при действии морской воды независимо от скорости ее потока, что объясняется большой прочностью пассивирующей окисной пленки. Скорость коррозии нержавеющей стали, в отличие от других материалов, в условиях быстрого потока морской воды уменьшается, что обусловлено более легким поступлением к ее поверхности кислорода, необходимого для поддержания пассивного состояния. [c.457]


    Существенным отличием этого издания является применение единиц системы СИ, получившей широкое распространение. В целом, мы следуем рекомендациям [1, 2]. Соответственно, скорости коррозии выражены в граммах на квадратный метр в сутки [г/(м .сут)] и в миллиметрах в год (мм/год). Этими единицами заменены — миллиграммы на дм в сутки [мг/(дм .сут) ] и дюймы в год, которые все еще нередко используются в США. Плотности тока выражены в амперах на м (А/м ), кроме случаев, когда отдано предпочтение мА/см или А/см из соображений наглядности. [c.14]

    Скорость равномерной коррозии выражают в разных единицах, чаще всего в миллиметрах в год (мм/год) или в граммах на квадратный метр за сутки [г/(м .сут)1 . Эти единицы характеризуют глубину разрушения или потерю массы металла, причем рассматривается поверхность металла, свободная от продуктов коррозии. Например, сталь в морской воде корродирует с приблизительно постоянной скоростью близкой к 0,13 мм/год, т. е. 2,5 г/(м .сут). Это усредненное значение обычно в случае равномерной коррозии в начальный период скорость повышена [9], поэтому данные о скоростях коррозии должны сопровождаться сведениями о длительности испытаний. [c.26]

    Возрастание скорости коррозии железа по мере уменьшения pH обусловлено не только увеличением скорости выделения водорода в действительности облегченный доступ кислорода к поверхности металла вследствие растворения поверхностного оксида усиливает кислородную деполяризацию, что нередко является более важным фактором. Зависимость скорости коррозии железа или стали в неокисляющих кислотах от концентрации растворенного кислорода показана в табл. 6.2. В 6 % уксусной кислоте отношение скоростей коррозии в присутствии кислорода и в его отсутствие равно 87. В окисляющих кислотах, например в азотной, действующих как деполяризаторы, для которых скорость коррозии не зависит от концентрации растворенного кислорода, это отношение близко к единице. В общем, чем более разбавлена кислота, тем больше отношение скоростей коррозии в присутствии и в отсут- ствие кислорода. В концентрированных кислотах скорость выделения водорода так велика, что затрудняется доступ к поверхности металла. Поэтому деполяризация в концентрированных кислотах в меньшей степени способствует увеличению скорости коррозии, чем в разбавленных, где диффузия кислорода идет о большей легкостью. [c.109]

    В табл. 13 приведены результаты расчетов остаточного ресурса работы трубопроводов (минимальная толщина стенки 18 мм) по данным внутритрубной дефектоскопии после 15 лет эксплуатации. При этом наружные и внутренние дефекты рассматривали отдельно. Поскольку скорость коррозии внутренней поверхности труб выше, чем наружной, считали, что она определяет остаточный ресурс трубопровода, который рассчитывали, согласно изложенной выше методике, исходя из условия, что глубина повреждений не превысит 3,5 мм (рис. 39). Полученные значения остаточного ресурса трубопроводов справедливы в случае, если ремонт выявленных дефектных участков проводиться не будет. Эти значения можно трактовать так же, как время до завершения ремонта трубопроводов. Вероятность отказа трубопровода за время выработки определенного остаточного ресурса или возможность аварии из-за наличия дефектов, глубина которых превышает критические значения (график V), не поддается расчету, так как она близка к единице, и возможности ЭВМ недостаточны для проведения такого расчета. Для трубопроводов, которые могут иметь дефекты металла глубиной 5 мм, значения вероятности безотказной работы превышают [c.149]


    Скорость коррозии может быть выражена в различных единицах. Если опасны общие потери металла, ее оценивают по массовому показателю, т. е, по потере металла, отнесенной к единице поверхности и к единице времени, например, в г/(см -ч) или в г/(м гoд). Если опасность представляет сквозная коррозия, ее скорость оценивают по глубинному показателю, т. е. по уменьшению толщины металла вследствие коррозии, выраженному в линейных единицах и отнесенному к единице времени, например в мм/год. При коррозии, связанной с разрушением кристаллической решетки металла, учитывают механический показатель, т. е. относительное изменение прочности металла за определенный период, например уменьшение временного сопротивления на разрыв, в кг/(см -год). [c.14]

    Скорость коррозии может быть выражена в различных единицах. Если опасны общие потери металла, то ее оценивают по массовому показателю, т.е. по потере массы металла, отнесенной к единице поверхности и единице времени, например г/(см ч) или г/(м год). Если опасность представляет сквозная коррозия, то ее скорость оценивают по глубинному показателю, т.е. по глубине проникновения коррозионного разрушения, выраженному в линейных единицах и отнесенному к единице времени, например, мм/год. [c.11]

    Важнейшим показателем коррозии является ее скорость. Она выражается различными единицами измерения. Часто скорость коррозии оценивают в изменении (потере) массы на единице поверхности за некоторый период времени, например г/м -год или моль/см2 год. Принято также выражать коррозию уменьшением толщины изучаемого образца или толщиной образовавшегося слоя продукта. Скорость электрохимической коррозии может быть выражена плотностью тока, необходимой для данного изменения массы или толщины образца в единицу времени. При действии на металл кислоты скорость растворения может быть определена объемом выделившегося газа. [c.386]

    Скорость коррозии оценивают обычно двумя методами по убыли металла с единицы площади его поверхности и по скорости уменьшения слоя металла. Если скорость коррозии составляет менее 0,001 мм/год, го металл или сплав считаются совершенно стойкими, при скорости коррозии более 10 мм/год, наоборот, — нестойкими. [c.234]

    Скорость коррозии выражают несколькими способами. Наиболее часто пользуются массовым и глубинным показателями коррозии. Первый из них дает потерю массы (в граммах или килограммах) за единицу времени (секунду, час, сутки, год), отнесенную к единице площади (квадратный метр) испытуемого образца. Глубинный показатель коррозии выражается уменьшением толщины металла в единицу времени. Скорость электрохимической коррозии можно также выразить силой тока, приходящейся на единицу площади металла. [c.208]

    Скорость электрохимической коррозии. Разность потенциалов металла и окислителя определяет возможность коррозии. Более важной характеристикой служит скорость коррозии, выражаемая через потери металла в единицу времени. Скорость коррозии может быть также выражена по закону Фарадея через силу тока или через плотность тока. [c.214]

    Что такое скорость коррозии и в каких единицах она измеряется Приведите пример расчета скорости коррозии какого-нибудь металла. [c.405]

    Количественная характеристика коррозионных процессов. При общей коррозии скорость коррозии может быть выражена весовым показателем коррозии (/С), равным массе металла (г), превращенного в продукты коррозии за единицу времени (час или сутки) с единицы его поверхности (см , дм или м ). Иногда скорость кор- [c.207]

    Т. е. скорость коррозии может измеряться толщиной слоя потерянного металла за единицу времени (мм/ч, мм/год и т. д.). Оба метода измерения относятся к случаю равномерной коррозии и характеризуют собой средние величины, которые скорее относятся к материалам для изготовления машин. [c.534]

    Объемный метод изучения скорости коррозии основан на определении количества выделившегося при реакции водорода ( при коррозии в кислой среде с водной деполяризацией) или поглощенного кислорода (при коррозии в нейтральных средах с кислородной деполяризацией). Оценка скорости коррозии в этом случае с помощью объемного показателя Коб, равного отношению объема выделившегося или поглощенного газа к поверхности корродирующего металла в единицу времени  [c.7]

    Единицы измерения скорости коррозии [c.605]

    Таким образом, в результате суточных колебаний температуры в технических средствах происходит непрерывное, движение нефтепродукта, главным образом у стенок технических средств. В этом отнощении подземные резервуары находятся в более выгодных условиях, так как температура продукта в них почти не изменяется, и поэтому скорость коррозии внутренней поверхности подземных резервуаров значительно меньше, чем наземных. Этим же объясняется усиленная коррозия внутренней поверхности резервуаров небольшого объема, а также цистерн или тары, в которых движение нефтепродукта вследствие температурных колебаний происходит в большей степени и объем перемещающегося продукта на единицу поверхности выше, чем для резервуаров с большим объемом. [c.37]

    Скорость коррозии определяется по убыли массы с единицы длины образцов  [c.86]


    Метод заключается в определении потерь массы в результате коррозии с единицы площади образцов исследуемых металлов за единицу времени. Перед гравиметрическим определением скорости коррозии поверхность образцов соответствующим образом обрабатывают. В идеальном случае поверхность образцов должна быть обработана так же, как поверхность конкретного участка или узла котельного оборудования, коррозионную стойкость (или в случае [c.115]

    Основой для определения этим методом скорости коррозии металла в зоне отверстия будет служить замер возрастания за единицу времени (1 ч) при постоянных температуре и давлении вытекающей жидкости, под воздействием которой разъедается металл. [c.125]

    НИЙ теории локальных элементов, удобны для качественного рассмотрения процесса коррозии и для оценки возможного влияния на него различных факторов. В то же время их использование при. количественных расчетах скорости коррозии связано со значительными трудностями. Скорость коррозии определяется изменением массы образца за единицу времени, отнесенным к единице его поверхности, или (в электрических единицах) плотностью тока /. Коррозионные же диаграммы, прив15денныс на рнс. 24.4 и 24.5, построены в координатах потенциал — сила тока, т. е. не позволяют судить о плотности тока, непосредственно характеризующей скорость коррозии. Для ее расчета нужны поэтому дополнительные данные. Необходимо знать качественный состав корродирующего металла, чтобы выяснить, какие компоненты металла в данных условиях будут играть роль катодов и какие — анодов. Необходимо установить долю поверхности, приходящуюся на каждый катодный и анодный участок, чтобы иметь возможность определять плотность тока на любом из них. Далее требуется для всех анодных составляющих снять анодные поляризационные кривые, а для всех катодных— катодные. Это позволит найти общую скорость катодной, и анодной реакций и установить наиболее эффективные анодные и катодные составляющие. Зиая стационарные потенциалы, можно,, суммируя все катодные и все анодные кривые, построить результативную коррозионную диаграмму, пс которой уже затем определить максимально возможную силу тока. Предполагая, что омические потери малы, и зная, как распределяется поверхность между анодными и катодными зонами, вычисляют скорость коррозии. Этот сложный способ, дающий к тому же не всегда однозначные результаты (в связи с возможностью совмещения катодных и анодных реакций на одном и том же участке), редко применяется для количественной оценки скорости коррозии. [c.499]

    Задачу определения скорости коррозии решают проще с помощью кинетической теории коррозии. В этом случае катодную и анодную поляризационные кривые снимают непосредственно на образце, коррозию которого изучают. Общую скорость коррозии выражают силой тока, отнесенной к единице всей поверхности металла, без разделения ее на катодные и анодные участки. При стационарном потенциале скорость коррозии (вырал<аемая силой тока анодного растворения металла), отнесенная ко всей его поверхности (т. е. включая и катодные зоны), должна быть равна скорости катодного процесса, например скорости выделения водорода. Последняя в случае снятия катодной поляризационной кривой будет равна силе тока, деленной на всю поверхность образца, включая анодные участки. Таким образом,если потенциал стационарен, то плотности тока для анодного и катодного ироцессов при указанном способе снятия поляризационных кривых должны быть оди-ипкопымп. При этом предполагают, тo омическими потерями можно пренебречь. [c.499]

    Коррозионную стойкость металлических материалов характеризуют скоростью коррозии или глубинным показателем коррозии. Скорость коррозии какого-либо металла обычно определяется но уменьшению массы образца, отнесенному к единице его поверхности прн заданной продолжительности испъпания, и выражается в гЦм--ч). Глубинный показатель ко1 розни выряжают в линейных единицах, отнесенных к единице времени, и находят, па-пример, по следующей формуле  [c.805]

    Питтингом называют разрушения локального типа, наблюдаемые в тех случаях, когда скорость коррозии на одних участках выше, чем на других. Если значительное разрушение сосредоточено на относительно маленьких участках поверхности металла, возникают глубокие точечные поражения, если площадь разрушения больше и глубина невелика — возникают язвенные поражения. Глубину питтинга иногда характеризуют питтинго-вым фактором. Это отношение максимально наблюдаемой глубины питтинга к средней глубине проникновения коррозии, найденной по изменению массы образца. Питтинговый фактор, равный единице, соответствует равномерной коррозии (рис. 2.7). [c.27]

    Гальванические элементы, действие которых вызывает коррозию металлов, аналогичны рассмотренному выше корроткозамкну-тому элементу. Измеряемый потенциал корродирующего металла— это компромиссный потенциал поляризованных анодов и катодов, известный как потенциал коррозии ор- Значение /max называется током коррозии /кор- Согласно закону Фарадея, скорость коррозии анода пропорциональна / ор, следовательно, скорость коррозии на единицу площади поверхности металла всегда можно выразить через плотность тока. Для цинка скорость коррозии [c.48]

    Далее можно определить тафелевские наклоны (см. п. 4.4.2). Экстраполяцией анодного тафелевского участка tia обратимуй (равновесный) потенциал анода определяют плотность тока обмена /оа для реакции -j- гё М.. Значение /оа равно скорости реакций Окисления и восстановления, выраженной в единицах плотности тока. Аналогично, экстраполяцией тафелевского участка на обратимый потенциал определяется /он — плотность тока обмена катодной реакции. Экстраполируя анодный или катодный тафелевские участки на потенциал коррозии к,ор> при котором /н = /а, ОПредеЛЯЮТ скорость коррозии /кор при условии, что Ла = Лк (отношение анодной и катодной площадей равно единице). Хотя последнее условие часто довольно точно выполняется, для более точной аппроксимации скорости коррозии требуются необходимые сведения о действительном отношении площадей катодной.и анодной реакции. [c.61]

    Скорость коррозии может быть выражена в весовых [гДдм -год) или в глубинных (мм/год) единицах. [c.18]

    Общепринятыми являются три показателя скорости коррозии. Весовой показатель соответствует количеству металла, растворившемуся с единицы поверхности металла в течение определенного времени, и выражается в г1м -ч или мг1дм -сут. [c.250]

    Электрохимическая единица для выражения скорости коррозии представляет суммарную силу тока всех коррозионных пар, функционирующих на поверхности металла. Она выражается, например, в ма1см . [c.251]

    Объемный показатель обычно измеряется в см /(см .ч ). Электрохимические методы коррозионных испытаний основаны на определении скорости коррозии в токовых единицах, получаемых при снятии анодных и катодных пол изационных кривых. Если коррозия протекает по электрохимическому механизму, то. зная уравнение реакции, скорость коррозии, выраженную в единицах плотности тока (обычно мА/см ) при помощи закона Фарадея можно перевести в массовый показатель скорости коррозии. [c.7]

    Влажность почвы. Под влажностью почвы принято понимать отношение количества воды, находящейся в единице объема, к массе сухого твердого вещества в этом же объеме. Наличие воды в почве — главная причина возникновения коррозионного процесса, поэтому на интенсивность развития коррозионного процесса оказьшает большое влияние влажность почвы. Известно, что в сухих почвах коррозия незначительна. При влажности почвы до 10 % скорость коррозии сравнительно невелика, но от 10 % и выше наблюдается заметное увеличение скорости коррозии, которая достигает максимума при определенной критической влажности. Критическая влажность зависит от засоленности и влагоем-кости почвы, т.е. от типа, структуры и гранулометрического состава. При большой влажности, выше критической, скорость коррозии уменьшается вследствие затрудненности доступа кислорода. Различное влияние степени увлажненности почвы на ее коррозионную активность связано с тем, что при малой влажности велико омическое сопротивление почвы, что тормозит анодные и катодные процессы. Доступ кислорода в почве отличается от такового при погружении металла в раствор или под пленкой влаги, и в зависимости от структуры и степени увлажненности почвы он может меняться на несколько порядков, т.е. в десятки тысяч раз. [c.42]

    Коррозионный ток пары на единицу площади анода (fa=l) будет тем больше, чем больше начальная разность стационарных потенциалов контактируе-ыых металлов в данной среде, чем меньше поляризуемость электродов и омическое сопротивление коррозионной пары и чем больше площадь катода. Таким образом, могут быть очень опасные контакты, приводящие к быстрой коррозии анода, и менее опасные, где ускорение коррозии анода будет не очень существенным. Допустимость того или иного контакта может быть определена количественным показателем скорости коррозии анода так, абсолютно допустимы контакты при скорости коррозии анода до 50 г/(м -год), условно допустимыми контакты считаются при скорости коррозии от 50 до 150 г/(м2 год) и недопустимы контакты при скорости коррозии анода более 150 г/(м2-год). [c.7]

    Массометрический показатель скорости коррозии — это изменение массы металла в результате коррозии, отнесенное к единице его поверхности, в единицу времени, и вычисляется по формуле [c.79]

    Глубинный показатель скорости коррозии учитывает уменьшение толщины металла вследствие коррозии, выраженное в линейных единицах и отнесенное к -единице времени. Среднее значение глубины коррозионного поражения при рав-яомерной коррозии можно вычислить с помощью массометрического показателя скорости коррозии Кт - [c.79]


Смотреть страницы где упоминается термин Скорость коррозии, единицы: [c.487]    [c.39]    [c.402]    [c.68]    [c.517]    [c.203]    [c.208]    [c.535]    [c.42]    [c.56]    [c.64]    [c.117]   
Справочник химика-энергетика Том 1 Изд.2 (1972) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Скорость коррозии



© 2025 chem21.info Реклама на сайте