Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Электронная микроскопия сканирующая

Рис. 2-12. Микрофотография нефтяного кокса чешуйчатой структуры. Сканирующий электронный микроскоп Рис. 2-12. Микрофотография <a href="/info/56120">нефтяного кокса</a> чешуйчатой структуры. <a href="/info/129214">Сканирующий электронный</a> микроскоп

Рис. 14.1. Микрофотография поверхности фосфатированиой мягкой стали марки 1010 (получена с помощью сканирующего электронного микроскопа). Покрытие получено из кислого раствора фосфата цинка с добавкой нитрата натрия в качестве ускорителя при выдержке в течение 1 мин при 65 °С [11а] Рис. 14.1. <a href="/info/1846342">Микрофотография поверхности</a> фосфатированиой <a href="/info/477694">мягкой стали</a> марки 1010 (получена с помощью сканирующего электронного микроскопа). <a href="/info/1060167">Покрытие получено</a> из <a href="/info/58826">кислого раствора</a> фосфата цинка с <a href="/info/472095">добавкой нитрата</a> натрия в качестве ускорителя при выдержке в течение 1 мин при 65 °С [11а]
    Рентгеновская фотоэлектронная спектроскопия (РФЭС) Сканирующая электронная микроскопия (СЭМ) Электронная оже-спектроскопия (ЭОС) [c.12]

    Электронная микроскопия (сканирующая - СЭМ и трансмиссионная - ТЭМ) превосходит оптическую по разрешающей способности и позволяет исследовать как ненаполненные, так и наполненные смеси. Однако при использовании электронной микроскопии могут возникнуть проблемы с контрастированием фаз, что требует или тонирования одной из фаз, или физической обработки. При близкой ненасыщенности эластомеров приходится применять более сложную процедуру травления. [c.576]

    Метод рентгеновского микроанализа позволяет легко определять распределение элементов и сегрегацию компонентов с шагом 1 мкм и может быть полезен для исследования таблеток, а также крупных частиц катализатора. Особенно ценно сочетание этого метода со сканирующей электронной микроскопией. [c.30]

    Сопоставление результатов различных методов исследования (дифференциальная сканирующая калориметрия, сканирующая электронная микроскопия и ядерный магнитный резонанс) позволило получить представление о характере поведения воды в гидрофильных полимерных материалах [55]. [c.67]

    Визуальное наблюдение и изучение разорванных образцов с помощью оптического или сканирующего электронного микроскопа (СЭМ) являются важнейшими методами анализа разрушения. Очевидно, они помогают [c.263]

    Микроструктурные исследования игольчатого кокса позволяют считать, что ламелярные составляющие возникают из мелких фибриллярных образований, по-видимому, за счет повышенной турбулентности газовых потоков при замедленном коксовании. Дополнительную информацию по оценке микроструктуры также можно получить при использовании сканирующей электронной микроскопии [2-34]. [c.60]

    Электронно-микроскопический анализ. Этот метод дает представление о строении кристаллических областей в асфальтенах и дает наглядную картину об их надмолекулярной организации. Исследования выполняются в просвечивающих и сканирующих (растровых)- электронных микроскопах [329, 330]. Просвечивающие электронные микроскопы позволяют одновременно получать как электронно-микроскопический снимок, так и электронограмму в области больших и малых углов. Разрешающая способность их составляет 15—2 нм, а для сканирующих микроскопов 3—5 нм. Пучок электронов вызывает значительный разогрев и даже плавление образцов, поэтому просвечивающая электронная микроскопия применяется для объектов, имеющих незначительную толщину,— несколько десятков нанометров. Для этого образцы специальным образом готовят получают либо тонкие пленки, либо с помощью ультрамикротомов готовят срезы толщиной 10—20 нм. Из косвенных методов для исследования структуры асфальтенов получил распространение метод реплик. Для исследования используют мелкодисперсные порошки асфальтенов [325] или растворы в бензоле [319]. В первом случае асфальтены помещают на угольную (аморфную) подложку на медной сетке. С целью определения фоновых микропримесей проводят контрольные съемки пустой подложки. Во втором случае бензольные 0,1 % растворы асфальтенов диспергируют на поверхность полированного стекла с частотой излучателя 35 кГц. Далее стекло.с пленкой асфальтенов помещают в вакуумный пост и растворитель откачивают в течение 20 мин. Для контроля сходимости результатов с поверхности пленки асфальтенов получают реплику двумя способами. Одноступенчатая реплика образовывается напылением угольной пленки, а двухступенчатая — чистого алюминия толщиной не менее 0,2 мм. Затем асфальтеновую пленку растворяют в бензоле и отдельную угольную реплику оттеняют платиной. Во втором случае на обратную сторону отдельной алюминиевой фольги напыляют платиноугольную реплику толщиной 20—30 нм, а алюминиевую фольгу затем растворяют в азотной кислоте [331]. [c.158]


    Структура изопористой мембраны (фотография получена с помощью сканирующего электронного микроскопа). [c.57]

    Медленный рост трещины при растяжении компактных образцов, обладающих морфологической структурой второго типа, схематически проиллюстрирован на рис. 9.23, а. Здесь показан преимущественный рост трещин серебра впереди обычных трещин вдоль поверхностей раздела крупных сферолитов (рис. 9.23, б), внутри более крупных сферолитов (рис. 9.23, в) и на границах небольших сферолитов (рис. 9.23, г). Поведение обычной трещины в зоне ее быстрого роста иллюстрируется на рис. 9.24. На микрофотографии поверхности разрушения, полученной на сканирующем электронном микроскопе, выявляются отклонения пути разрушения от прямой, обусловленные неоднородностями структуры (рис. 9.24, а). Точки 1—3 соответствуют путям разрушений, показанных на рис. 9.24, а—в. Эти пути соответствуют границе сферолита 1 или рассекают соответственно сегмент 2 или ядро 3. [c.395]

    Сведения о текстурных и структурных характеристиках исследованных образцов получены из анализа изотерм адсорбции азота и диоксида углерода, а также методом сканирующей электронной микроскопии. Обнаружено, что при термическом расширении происходит расщепление графитовых пластин на более тонкие слои. Полученные образцы обладают развитой микропористой структурой, представленной в основном щелевидными микропорами с преобладающим размером щелей 0,71-0,92 нм. Суммарный объем микропор составляет 0,114-0,330 см /г и зависит от способа приготовления углеродного материала. [c.122]

Рис. 2-11. Ламелярная микроструктура нефтяного кокса, полученного из пиролизной смолы, обогащенной мезофазой. Сканирующий электронный микроскоп Рис. 2-11. Ламелярная микроструктура <a href="/info/56120">нефтяного кокса</a>, полученного из <a href="/info/404955">пиролизной смолы</a>, обогащенной мезофазой. <a href="/info/129214">Сканирующий электронный</a> микроскоп
    Растровая сканирующая электронная микроскопия. Растровый электронный микроскоп (РЭМ) — прибор, в основу работы которого положен телевизионный принцип развертки тонкого пучка электронов (или ионов) на поверхности непрозрачного исследуемого образца. Пучок электронов, падающий на поверхность образца, взаимодействует с веществом, следствием чего является возникновение целого ряда физических явлений (рис. 59). Регистрируя соответствующими датчиками то или иное излучение (например, вторичные электроны) и подавая сигналы на кинескоп, получают рельефную картину изображения поверхности образца на экране. [c.149]

    На основании этих данных, а также исследований, выполненных на сканирующем электронном микроскопе [6-156], можно установить следующие три кинетические стадии процесса  [c.386]

Рис. 7-18. Полоса деформации в образце из высокотемпературного ПУ. Сканирующий электронный микроскоп, хЗОО [7-35]. Рис. 7-18. <a href="/info/793366">Полоса деформации</a> в образце из высокотемпературного ПУ. Сканирующий электронный микроскоп, хЗОО [7-35].
Рис. 8-17. Продукты гетерогенной графитации СУ из фурфурилового спирта. Сканирующий электронный микроскоп [8-7] Рис. 8-17. Продукты гетерогенной графитации СУ из <a href="/info/38876">фурфурилового спирта</a>. <a href="/info/129214">Сканирующий электронный</a> микроскоп [8-7]
    По данным исследований на сканирующем электронном микроскопе, равномерность покрытия высокопрочных волокон значительно выше, чем высокомодульных. [c.642]

    Эффективным средством идентификации параметров и автоматизированного построения моделей пористых сред являются вычислительные комплексы, оснащенные средствами автоматического анализа изображения (ААИ). Принципиальная схема одного из таких вычислительных комплексов показана на рис. 3.3. При помощи передающего телевизионного сканирующего устройства изображение объекта может быть введено в цветном или чернобелом варианте непосредственно с плоскости наблюдения во всех ее видах, т. е., например, с фокальной плоскости окуляра оптического микроскопа, с экрана электронного микроскопа, с экрана телевизора, а также фотографических репродукций и др. Соответственно в схему ААИ может быть включен оптический микроскоп, электронный микроскоп (просвечивающий, эмиссионный или растровый), приемное телевизионное устройство, эпидиаскоп и т. п. Скорость работы современных ААИ более чем на 5 порядков превышает скорость работы человеческого глаза при значительно более высокой чувствительности (свыше 200 точек на [c.125]


    Исследования с помощью сканирующего электронного микроскопа не обнаружили каких-либо различий в поверхности полимерных мембран, которые находились в течение 2 недель на воздухе или в 3,5%-ном растворе 1ЧаС1. Поверхности всех испытанных мембран были гладкими, однородными, без открытых структур. [c.81]

    Использование при исследовании серусодержащих присадок современных физических методов (рентгеновской дифрактомет-рии, рентгеновского микроанализа, оптической микроскопии, сканирующей электронной микроскопии) позволило сделать важные выводы по механизму действия присадок [150, 151]  [c.136]

    Сканирующая электронная микроскопия Электронный микрозонд Инфракрасная спектроскопия Элементный анализ Кислотность поверхности Иотерн при сгорании Термогравнметрический анализ Плотность [c.12]

    Третий вариант объяснения данных, полученных при ступенчатых деформационных испытаниях, предложили Крист и Петерлин [9]. Они предположили для любого из упомянутых выше экспериментов существование неравномерного распределения деформаций вследствие различия длин нескольких тысяч одновременно напряженных волокон. Эффект неравных длин волокон, несомненно, расширяет имеющиеся распределения относительных длин цепей. Но преждевременные разрушения отдельных волокон и образование поверхностей их разрушения нельзя объяснить числом образовавшихся свободных радикалов. Чтобы в дальнейшем выяснить этот вопрос, Хассель и Деври исследовали свободные радикалы, образованные при деформировании ленты материала найлон-66 с высокоориентированными волокнами [10]. Они получили аналогичные гистограммы, которые оказались даже более широкими по сравнению с пучками волокна найлона-66. На микрофотографии поверхности разрушения ленточного материала, полученной с помощью сканирующего электронного микроскопа, показано, что в ленте, как и в нити, дефекты образуются по всему объему напряженного образца (рис. 7.8 и 7.9). Полученная поверхность разрушения проходит вдоль направления наименьшего сопротивления через ранее образовавшиеся дефектные зоны. Лишь при приближении к значению разрушающей деформации становится заметным различие между деформированием одиночного волокна и пучка волокон. Статистическое объяснение данного факта приведено в гл. 3. [c.196]

Рис. 2-3. Электроннал микрофотография ламелярной структуры нефтяного кокса. Сканирующий электронный микроскоп. Рис. 2-3. <a href="/info/73091">Электроннал микрофотография</a> ламелярной <a href="/info/66293">структуры нефтяного кокса</a>. <a href="/info/129214">Сканирующий электронный</a> микроскоп.
    Количественные исследования микросоставляющих нефтяного игольчатого кокса на сканирующем электронном микроскопе [2-37] показывают, что ламелярная ориентированная структура составляет более 30%. Эти оценки достаточно структурночувствительны для определения технологической пригодности отдельных партий промышленных нефтяных коксов для производства электродов больших диаметров (более 450 мм) без изготовления технических образцов-свидетелей. Достаточная объективность этих оценок может быть обеспечена при учете представительности в пробе размеров исследуемых частичек кокса. [c.66]

Рис. 6-27. Электронная микрофотография графитированного кокса. Сканирующий электронный микроскоп. хбООО [6-103]. Рис. 6-27. <a href="/info/73091">Электронная микрофотография</a> <a href="/info/865646">графитированного кокса</a>. Сканирующий электронный микроскоп. хбООО [6-103].
Рис. 6-36. Микроструктура терморасширенного графита а — червеобразная фориа б — сотовая структура. Сканирующий электронный микроскоп Рис. 6-36. Микроструктура терморасширенного графита а — червеобразная фориа б — <a href="/info/479224">сотовая структура</a>. <a href="/info/129214">Сканирующий электронный</a> микроскоп
    Исследования методами световой микроскопии, сканирующей, просвечивающей, фазово-констрастной электронной микроскопии и рентгеноструктурного анализа позволили установить, [c.589]

    И-500 (Япония). Просвечивающий электронный микроскоп обеспечивает предельное разрешение 0,14 нм при изображении плоскости кристаллической решетки и 0,3 нм по точкам имеет увсличе 1ие от 100 до 800 000 раз, работает при ускоряющем напряжении до 125 кВ. У микроскопа имеются приставки для охлаждения и нагревания до 800°С. Вместе с приставкой HSE-2 микроскоп мокнет работать и как сканирующий, при этом достигается разрешение в режиме растрового просвечивания 3 нм и режиме вторичной электронной эмиссии 7 нм. При использовании микроскопа совместно с многими рентгеновскими спектрометрами можно проводить микроанализ. [c.147]

    JEM-IOO (Япония). Просвечивающий электронный микроскоп обеспечивает предельное разрешение 0,14 нм при изображении плоскости кристаллической решетки и 0,3 нм по точкам работает при ускоряющем напряжении до 100 кВ. Дает возможность получать микродифракцию с участка размером до 20 нм. Вместе с приставкой ASID-4D может работать и как сканирующий, при этом достигается более высокое разрешение, чем у предыдущего микроскопа в растрово-просвечивающем режиме 0,15 нм и в режиме вторичной электронной эмиссии 3 нм. [c.147]


Смотреть страницы где упоминается термин Электронная микроскопия сканирующая: [c.94]    [c.296]    [c.208]    [c.209]    [c.29]    [c.30]    [c.21]    [c.87]    [c.218]    [c.394]    [c.396]    [c.55]    [c.65]    [c.94]    [c.592]    [c.148]   
Экспериментальные методы в химии полимеров - часть 2 (1983) -- [ c.2 , c.110 , c.111 ]

Экспериментальные методы в химии полимеров Ч.2 (1983) -- [ c.2 , c.111 ]

Методы общей бактериологии Т.3 (1984) -- [ c.92 , c.94 , c.120 ]




ПОИСК





Смотрите так же термины и статьи:

Изучение поверхности сенсора с помощью сканирующего электронного микроскопа

Метод растровой сканирующей электронной микроскопии

Микроскоп

Микроскоп сканирующий электронный в слое резиста

Микроскоп сканирующий электронный модифицированный для экспонирования

Микроскоп сканирующий электронный рисунков

Микроскоп электронный

Микроскопия

Микроскопия электронная, для изучения магнетита сканирующая

Препарирование образцов для сканирующей электронной микроскопии

Применение сканирующей электронной микроскопии в исследовании полимеров

Растровая сканирующая электронная микроскопия РЭМ

Сканирующая туннельная микроскопия эффект туннелирования электронов

Сканирующая электронная микроскопия, анализ микрофильтрационных мембран

Сканирующая электронная микроскопия, анализ микрофильтрационных мембран Скорость разрыва сплошности

Сканирующей электронной микроскопии мето

Сканирующий электронный микроскоп

Травление - сканирующий электронный микроскоп (СЭМ)

Электронная микроскопия

Электронная микроскопия I III также Сканирующий электронный микроскоп, Трансмиссионный электронный микроскоп

Электронная микроскопия микроскоп

Электронная сканирующий электронный



© 2025 chem21.info Реклама на сайте