Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Методы хроматографического разделения с использованием комплексообразования

    Изложены общие теоретические основы аналитической химии и качес1 венный анализ. Рассмотрены гетерогенные (осадок — раствор), протолитические, окислительно-восстановительные равновесия, процессы комплексообразования, применение органических реагентов в аналитической химии, методы разделения и концентрирования, экстракция, некоторые хроматографические методы, качественный химический анализ катионов и анионов, использование физических и физико-химических методов в качественном анализе. Охарактеризованы методики аналитических реакций катионов и анионов, нх идентификация по ИК-спектрам поглощения. Приведены примеры и задачи. [c.2]


    Выбор группы методов концентрирования для конкретного анализируемого чистого вещества, с одной стороны, зависит от свойств элементов основы и примесей. Например, концентрирование при анализе щелочных и щелочноземельных металлов проводится, в основном, путем группового выделения примесей (экстракцией, ионным обменом, соосаждением с коллектором и пр.). Для элементов, расположенных в середине Периодической системы, и переходных металлов в высших степенях валентности характерно образование летучих соединений с ковалентным Типом связи и для целей концентрирования при анализе названных элементов и их соединений часто могут быть использованы методы испарения (сублимации) основы. Переходные металлы (с достраивающимися электронными -оболочками) склонны к комплексообразованию в растворах и для их отделения перспективны экстракционные и ионообменные методы. Разделения в группах редкоземельных и актинидных элементов (с достраивающимися /-оболочками) требуют использования высокоэффективных хроматографических методов, в частности, метода ионообменной хроматографии. С другой стороны, важное значение для выбора метода концентрирования имеют физико-химические свойства анализируемого соединения (летучесть, плавкость, растворимость). Так, соединения, которые с трудом переводятся в раствор, следует подвергать обогащению методами испарения или направленной кристаллизации. Те же методы, не связанные с химической обработкой пробы, если они могут обеспечить концентрирование нужных примесей, следует применять и при анализе прочих чистых соединений. [c.319]

    Сернисто-ароматические концентраты, полученные хроматографическим разделением бензино-керосиновых фракций узбекских нефтей, содержали 5—10 вес. % общей серы, т. е. в 5 раз больше, чем исходные фракции (степень извлечения сернистых соединений составляла 60%). Однако примесь ароматических углеводородов в полученных концентратах достигала 50 вес. % и более [14]. Выделить из сернисто-ароматического концентрата некоторые сернистые соединения оказалось возможным лишь при использовании дополнительных методов (комплексообразование, ректификация). [c.100]

    Физико-химические и методические основы адсорбционно-комплексообразовательного хроматографического метода были освещены в ряде работ [16—23]. Были показаны также возможности применения этого метода в различных областях науки и промышленности, как, например, глубокая очистка содей металлов, разделение солей металлов на группы или выделение одного из компонентов смеси, концентрирование растворов солей металлов, качественный анализ смесей ионов, исследование процессов комплексообразования, попутное извлечение редких и рассеянных элементов при комплексном использовании рудного сырья, разделение близких по свойствам элементов, разделение органических веществ и осуществление некоторых химических реакций в органической химии [16—53]. Но наибольшие успехи применения этого метода были достигнуты при глубокой очистке веществ и получении их в спектрально чистом виде. [c.102]


    Поскольку обработка и интерпретация далных является столь жизненно необходимыми для всех видов химических экспериментов, в главе 2 детально описывается, как выразить точность и правильность аналитических результатов и как оценить погрешности в измерениях с цриложением строгих математических и статистических концепций к тому же этот материал обеспечивает прочные основы для обсуждения хроматографических разделений в более поздних главах. В главе 3 обсуждаются вопросы по Ведения раствор.енных веществ в водной среде и некоторые принципы химического равновесия, на которые опирается материал последующих разделов. Главы 4 и 5 охватывают кислотно-основные реакции в водных и неводных системах такой подход необходим для количественной оценки р астворимости осадков в различных растворителях и различных видов химических взаимодействий, возникающих в аналитических методах, которые основаны на комплексообразовании и экстракции. В главе 6 рассматривается теория и аналитическое применение реакций комплексообразования и основные положения использования этих общих представлений в таких аналитических методах, как прямая потенциометрия, кулонометрическое титрование, полярография и хроматография. Аналитические методы, основанные на образовании осадков, обсуждаются в главах 7 и 8. [c.19]

    В 1955 г. появилась обобщающая статья [511, в которой дан краткий обзор американских работ по выделению сернистых соединений рефтей и их идентификации. В статье приведено краткое описание 1 1етодов, применяемых в Американском нефтяном институте нри разработке исследовательской проблемы 48А, т. е. проблемы сернистых соединений пефти. Наиболее широко применялись методы вакуумной перегонки в сочетании с хроматографией на специальным образом приготовленной окиси алюминия. Результаты, полученные при Еспользовапии метода термической диффузии для концентрации сернистых соединений нефти, хорошо согласуются с данными хроматографического разделения па окиси алюминия. Из химических мето- ов, упоминается использование реакции комплексообразования. В, концентратах сернистых соединений (150—220 С) тексасской нефти, полученных в результате применения одного или нескольких методов, были идентифицированы при помощи инфракрасной спектроскопии и масс-спектроскопии 43 сернистых соединения (40 надежно, а 3 предположительно). Выделенные из нефти сернистые соединения чувствительны к металлам (особенно к меди и ртути) и к повышенным температурам. [c.368]

    Метод ионообменной хроматографии в настоящее время широко используется для получения чистых препаратов редкоземельных элементов (РЗЭ) [1—4]. Известно большое число различных методик хроматографического разделения смесей РЗЭ, но многие из них носят эмпирический характер. Наряду с этим в литературе имеется ряд сообщений, посвященных выбору условий хроматографического разделения смесей. Мейер и Тонкине [5] использовали теорию тарелок для описания процесса элюирования РЗЭ раствором лимонной кислоты теоретические кривые вымывания совпали с опытными. Метод расчета применим также для определения чистоты РЗЭ, разделяемых при помощи процесса элюирования. Корниш [6], используя выражение, данное Глюкауфом для высоты, эквивалентной теоретической тарелке (ВЭТТ), применил теорию тарелок для предсказания условий разделения смесей ряда элементов. В работах Масловой, Назарова и Чмутова [7,8] была рассчитана величина ВЭТТ для процесса вымывания церия раствором молочной кислоты, что дало возможность произвести расчет кривой элюирования и установить условия получения элемента с заданной степенью чистоты. В работе тех же авторов [8] на примере разделения церия и прометия молочной и пирофосфорной кислотами был проведен расчет процесса градиентного элюирования РЗЭ, с использованием теории Фрейлинга. Расчет удовлетворительно совпадает с экспериментальными данными. В работах Еловича и сотр. [9—12] получено выражение для расчета процесса разделения близких по свойствам элементов. На примере разделения трансурановых элементов при помощи ЭДТА показано решающее значение комплексообразования по сравнению с обычным ионным обменом. В работах Материной, Сафоновой и Чмутова[13] рассмотрена возможность применения фронтального анализа в ионообменной комплексообразовательной хроматографии. Авторы изучали процесс комплексообразования в зависимости от pH среды. Маторина [14] изучила зависимость равновесного коэффициента разделения от pH [c.170]

    Суш ность адсорбционно-комилсксообразовательного хроматографического метода состоит в применении для разделения смеси веш еств колонн, содержащих комплексообразующее вещество и адсорбент, способный удерживать на своей поверхности комплексные соединения (в том числе соединеиия, обладающие значительной растворимостью), которые образуются ири взаимодействии разделяемых веществ с комплексообразующим агентом. Разделение катионов в таких колоннах определяется раз-личиел в способности металлов к комплексообразованию с данным агентом и в устойчивости образующихся в колоннах комплексных соединений. Применение носителя, способного адсорбировать эти соединения, расширяет возможности использования обычных химических реагентов для хроматографического разделения металлов, позволяя получать из легко доступных материалов сорбенты, отличающиеся высокой избирательностью действия и обеспечивающие в силу этого полноту разделения металлов, часто не достигаемую другими методами. [c.182]



Смотреть страницы где упоминается термин Методы хроматографического разделения с использованием комплексообразования: [c.688]    [c.213]    [c.213]   
Аналитическая химия алюминия (1971) -- [ c.0 ]

Аналитическая химия алюминия (1971) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Комплексообразование

Комплексообразования методы

Комплексообразованне

Методы разделения

Методы хроматографические

Методы хроматографического разделения

Разделение комплексообразования

Разделение с использованием комплексообразования



© 2025 chem21.info Реклама на сайте