Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Бактериофаги мутантные

    Как можно быстро обнаружить рекомбинантный бактериофаг Бензер использовал в качестве клеток-хозяев два штамма Е. oli штамм В и штамм К- Бактериофаги с мутантным геном гП образовывали характерные пятна в чашках с бактериями штамма В, но не росли на бактериях штамма К. Для того чтобы определить частоту рекомбинаций между двумя разными г//-мутантами, вирусы добавляли к жид- [c.249]


    Трансдукция — явление, аналогичное бактериальным трансформациям. Например, при заражении бактериофагом Т2 мутантной формы кишечной палочки, не способной синтезировать тимин, клетки последней приобретают свойство образовывать фермент, ранее в ней отсутствовавший и необходимый для синтеза тимина. Но ведь при заражении бактериальной клетки в нее проникает только фаговая ДНК, а не белок. Значит, только фаговая ДНК влияет на трансдукцию, наделяющую бактериальную клетку указанным свойством. Однако для бактериофага такая трансдукция характерна лишь тогда, когда он до заражения инкубировался с культурой, способной к такому синтезу. Следовательно, этот процесс аналогичен передаче признаков путем трансформации. [c.83]

    Если исследуют мутации, дающие селективное преимущество, то мутантов легко выявить методом отпечатков, или реплик, предложенным Э. и Дж. Ледерберг (рис. 12.2). Например, при изучении мутаций устойчивости Е. соИ к бактериофагу Т1 (мутанты Топ" ) клетки бактерии высевают на агаризованную среду в чашки Петри таким образом, чтобы на них образовались отдельные колонии. Затем при помощи бархатной печатки эти колонии перепечатывают на чашки с нанесенной суспензией частиц фага TI. Большая часть клеток исходной (чувствительной) культуры (Топ) не будет образовывать колоний, поскольку их лизирует бактериофаг. Вырастут лишь отдельные мутантные колонии (Топ"), устойчивые к фагу. Сравнивая частоту мутантов в контрольном и опытном (например, облученном ультрафиолетовым светом) вариантах, легко определить частоту индуцированных мутаций. [c.298]

    Существенная деталь схемы, показанной на рис. 15-5, состоит в том, что если пурин находится с левой стороны (как это показано на рисунке), то на правой стороне остается место лишь для пиримидинового кольца. Таким образом, вероятность наличия на правой стороне А и О исключена и остается выбирать только между С и и (или Т). Однако и не подойдет, потому что диполь, необходимый для образования водородной связи, расположен в этом основании в неправильном направлении. В растворе эти биполярные группы гидратированы. Маловероятно, чтобы эти группы отщепляли связанные с ними молекулы воды до образования водородных связей внутри пары оснований. Связыванию будет препятствовать, однако, не только то обстоятельство, что молекулы и (или Т) неспособны образовывать прочные водородные связи внутри свободного участка, показанного на рис. 15-5, но также наличие электростатического отталкивания одноименно заряженных концов диполей. В результате сродство РНК-полимераэы к неправильно спариваемым основаниям окажется сниженным. Снижение сродства (увеличение значения кажущейся КиС) удалось наблюдать в эксперименте, по крайней мере для ДНК-полимеразы бактериофага Т4, для иоторой известны мутантные формы. Одна из них, [c.213]


    Мутантные бактериофаги могут быть обнаружены различными способами, однако наиболее просто это можно сделать по внешнему виду образующихся пятен. Другой тип легко обнаруживаемых мутантов — это мутанты с нарушением специфичности к определенным штаммам бактерий-хозяев. Ключевым отк рытием, позволившим проводить генетическое картирование бактериофагов, явились данные о том, что внутри бактерии-хозяина может происходить генетическая рекомбинация между двумя частицами фага. Рекомбинация может быть проиллю-с рировака следующим Образом. Два разных мутантных штамма бак- [c.248]

    Пытаясь найти по возможности более простые системы для изучения синтеза ДНК, многие исследователи обратились к мелким ДНК-содержащим вирусам типа ФХ174 и М13. Они не обошли при этом вниманием бактериофаги, снабженные отростками фаги Я, Т7 и Т4, а также плазмиду колицина Е-1. Преимущество этих систем состоит в том, что для них легче смоделировать репликацию ДНК в клеточных экстрактах, а кроме того, ДНК вирусов и плазмид хорошо изучены с генетической точки зрения. Во многих случаях репликация зависит как от генов вируса, так и от генов клетки-хозяина. Так, например, мутации генов dnaB, D, Е, F и О приводят к потере способности поддерживать рост фага X точно так же, как и в случае, когда инактивированы /s-гены. Вместе с тем фаг X сохраняет способность к репликации в бактериях с мутантными генами А я С. Многие вирусы, в том числе Т-четные фаги, содержат гены, кодирующие синтез своих собственных специфических ДНК-полимераз и других белков, необходимых для репликации. [c.276]

    Для того чтобы тонкое генетическое картирование можно было осуществить на практике, необходим еще один метод. Была составлена генетическая карта для ряда мутантных бактериофагов с делециями, захватывающими большие участки гена г11. С помощью этих мутантов можно было легко определить, в каком именно участке гена соответствующего мутанта находится данная мутация. Последующие эксперименты по рекомбинации с использованием предварительно идентифицированных мутаций позволяют уточнить локализацию мутации в ранее исследованном участке гена. Таким способом Бензеру удалось идентифицировать более 300 мутаций в гене гИ. Он пришел к выводу, что минимальное расстояние между двумя мутантными участками полностью согласуется со строением гена, предложенным Уотсоном и Криком. [c.250]

    Как можно ответить на вопрос о том, локализованы ли мутации в одном и том же гене, в близко расположенных генах или же в генах, отстоящих друг от друга на некотором расстоянии Ответ на этот вопрос можно получить с помощью теста на комплементацию. Если два мутантных бактериофага несут мутации в разных генах, то при заражении бактерии обоими мутантными фагами одновременно часто оказывается, что бактериофаги могут размножаться в бактерии-хозяине. Поскольку в этйм случае у каждого фага есть неповрежденный ген для Одного из двух затронутых белков, все генетические функции в этом случае выполняются. Если же у обоих мутантных фагов поврежден Один и тот же ген, то такие фаги не смогут дополнять функции друг Друга при совместном заражении. Такой эксперимент часто называют Чис-гранс-сравнением. Одновременное заражение двумя различными мутантами — это транс-тест. В качестве же контроля используют цис-тест бактерию заражают одновременно рекомбинантом, несущим обе мутации в одной и той же ДНК, и стандартным фагом. В этом случае репликация должна протекать нормально. [c.250]

    Триптофансинтетаза (стр. 141) состоит из двух субъединиц А и В (или а и ), первая из которых содержит всего лишь 268 аминокислот. Тонкую структуру гена А удалось картировать следующим образом. Было выделено большое число мутантных бактерий, неспособных расти на среде, не содержаш,ей триптофана (ауксотрофы по триптофану). Генетические скрещивания проводились с помощью специального трансдуцирующего бактериофага Pike [134]. В процессе размножения в чувствительных к ним бактериях трансдуцирующие бактериофаги иногда включают в собственную ДНК часть бактериальной хромосомы. В дальнейшем, когда такой фаг заражает другие бактерии, часть его генетической информации может переноситься в результате рекомбинации 3 хромосомы бактерий, переживших инфекцию. Используя серии мутантов с делециями аналогично тому, как это было сделано при картировании гена гЛ, удалось разделить ген А на ряд участков, а исследование частоты рекомбинаций позволило осуществить точное картирование. [c.251]

    Работа промоторарегулируется репрессор-ным белком с1 бактериофага X. На самом деле для регуляции транскрипции с p --np0M0T0pa обычно используется термочувствительная мутантная форма репрессора с1 - белок Клетки, синтезирующие этот репрессор, сначала выращивают при температуре 28-30 °С в этих условиях репрессор блокирует транскрипцию с р --промотора. Когда культура достигает нужной фазы (как правило, середины log-фазы), температуру повышают до 42 °С, при которой l -pe-прессор инактивируется и начинается транскрипция. [c.108]

    У вирусов бактерий (бактериофагов) были получены мутации нескольких типов. Мутантный фаг, как правило, отличается от фага дикого тина спектром литического действия (круг возможных хозяев) или морфологией стерильных пятен. Недавно были обнаружены другие мутанты (так называемые условно летальные)-, отбор этих мутантов основан на их чувствительности к повышенной температуре (такие ts-мутанты способны расти, скажем, при 30, но не при 40°) или на их способности размножаться в клетках какого-то одного определенного типа и неспособности размножаться на близкородственных бактериальных штаммах. Мутанты этой последней группы называются ашЬег-мутантами или просто ат-мутантами. Было показано, что у фагов Т2 и Т4 как мутации ат, так и мутации ts локализованы в различных участках хромосомы. Известно, что эти участки контролируют синтез не только обычных фаговых белков, но и других белков, которые вырабатываются зараженной бактериальной клеткой и необходимы для синтеза компонентов фага, в особенности его ДНК. Анализ всех этих мутантов позволил построить детальные генетические карты для нескольких вирусов бактерий. [c.487]


    Было показано, что после заражения Е, oli бактериофагом Т4 на фаговой ДНК-матрице начинает синтезироваться фагоснецифичная РНК, которую можно отличить от бактериальной РНК. Оказалось, что в РНК, синтезируемой на мутантной Т4-ДНК, в которой один из участков выпал делеция), отсутствует специфическая нуклеотидная последовательность, имеющаяся в РНК фага дикого типа. Этот результат также можно расценивать как доказательство комплементарного спаривания оснований нри синтезе РНК. [c.513]

    Другой тип мутантов, сыгравших большую роль в развитии генетики фагов, был открыт Лурия, который еще в период зарождения генетики бактерий как науки изучал мутации Е. соН Топ - Ton т. е. от чувствительности к устойчивости по отношению к фагу Т1 (гл. VI). Аналогичные спонтанные мутации приводят к тому, что из чувствительных к фагу Т2 клеток Е. соН (Tto ) дикого типа образуются мутанты Tio ". Устойчивость этих бактериальных мутантов обусловлена структурной модификацией их клеточной оболочки, в результате которой не происходит стерео-специфической фиксации органов адсорбции отростка фага Т2 на соответствующих рецепторах клетки. В результате фаг уже не может присоединиться к клетке, и, следовательно, ДНК фага не может быть инъецирована внутрь клетки хозяина. Почему же тогда, несмотря на то что бактерии могут мутировать в устойчивую к фагу форму, в природе до сих пор существуют чувствительные к бактериофагу штаммы Почему в результате естественного отбора чувствительные формы не заменились устойчивыми Почему бактериальные вирусы до сих пор не лишились всех подходящих хозяев и не вымерли в результате этого Ответить на эти вопросы, как и на многие другие вопросы, касающиеся проблем эволюции, не так просто, однако одной из причин сохранения в природе бактериальных штаммов, чувствительных к фагу, могут быть открытые Лурия в 1945 г. мутанты с измененным спектром литического действия. Такие мутантные фаги с измененным спектром литического действия способны преодолеть устойчивость нечувствительных к фагу мутантов бактерий благодаря небольшим изменениям структуры органа адсорбции (по сравнению с фагом дикого типа). Эти структурные изменения позволяют мутантным органам адсорбции осуществлять стереоспецифическую реакцию с рецепторами мутантной фагоустойчивой бактерии, несмотря на модификацию клеточной оболочки, препятствующей присоединению фага дикого типа. Однако появление мутантов с измененным спектром литического действия ни в коей мере не может положить конец борьбе за существование, так как бактериальный штамм, устойчивый к фагу дикого типа и чувствительный к мутантному фагу с измененным спектром литического действия, может образовывать сверхустойчивый бактериальный мутант, устойчивый к обоим фагам. На появление сверхустойчивого бактериального штамма фаг, чтобы не оказаться побежденным, может ответить образованием мутанта со сверхизмененным спектром литического действия. Таким образом, сосуществование в природе бактерий и бактериальных вирусов поддерживается за счет тонкого мутационного равновесия, спасающего обоих антагонистов от полного вымирания. [c.280]

    Эти наблюдения были интерпретированы Херши в терминах классических представлений о сцеплении генов, выработанных 40 лет назад Морганом и Стёртевантом. Херши предположил, что генетический материал бактериофага состоит из расположенных в линейном порядке генов, каждый из которых несет генетическую информацию о каком-либо признаке вируса, подобно генам в хромосомах высших форм. Таким образом, разные мутанты фагов несут различные мутантные гены, и каждому мутантному признаку соответствует определенный участок, или локус, в такой линейной структуре сцепленных генов. Следовательно, геномы двух мутантных фагов h я г, сосуществующих в зараженной ими бактериальной клетке, можно представить в следующем виде  [c.288]

    Как отмечалось в гл. ХИ1, в 1953 г. Бензер начал собирать большую коллекцию гП-мутантов бактериофага Т4. Следует напомнить, что эти мутанты способны расти на обычных штаммах Е. соИ, на которых они формируют мутантные бляшки с характерной / -морфологией, но не растут на штаммах К, т. е. штаммах Е. соИ, несущих профаг "к, на которых фаг г дикого типа развивается нормально. В 1960 г. Бензер неожиданно обнаружил, что в его большой коллекции гП-мутантов содержится несколько амбивалентных фагов, которые не могут расти на одних К-штаммах бактерий, но могут расти на других К-штаммах. При дальнейшем исследовании этого неожиданного явления было выявлено три класса амбивалентных мутантов мутанты фага, относящиеся к каждому из этих классов, могли расти на одном из трех бактериальных штаммов К, но не могли расти на двух других. Каждый из трех классов мутантов включал около одной тридцатой из нескольких сотен мутантных сайтов, которые к тому времени были идентифицированы Бензером в гИА- и в гПВ-генах. [c.450]

    Как упоминалось в гл. XII, в 1960 г. был открыт класс условно-летальных мутантов бактериофага Т4, названных amber- или ат-мутантами. Напомним, что а/тг ег-мутация может возникнуть в любом из многих генов бактериофага и приводит к тому, что нормальный продукт этого гена не синтезируется при заражении обычных непермиссивных клеток Е. соИ (вследствие этого мутантный бактериофаг не может размножаться в этом хозяине). Однако при заражении клеток пермиссивного штамма К, фаговый атЬег-мутапт способен синтезировать нормальный продукт мутировавшего гена (и в этом случае происходит размножение фага). Теперь рассмотрим природу этого странного фенотипа фаговых мутантов. [c.453]

    Биохимические исследования жизненного цикла бактериофагов семейства 2 были в значительной степени дополнены работами по выделению и исследованию фаговых мутантов. Эти мутанты относились в основном к тем же двум условно-летальным типам, которые были использованы при построении кольцевой генетической карты Т-четных фагов а) чувствительные к температуре ( т ззеп5е ) мутанты, неспособные размножаться при повышенной температуре, при которой происходит развитие фага дикого типа, и б) ат6ег(нонсенс)-мутанты, способные размножаться только в клетках штаммов, несущих супрессорную мутацию, обеспечивающую-включение приемлемой аминокислоты в растущую полипептидную цепь под влиянием мутантного бессмысленного кодона УАГ (УАА или УГА). [c.474]

    Эксперимент Херши - Чейза свидетельствовал о важной генетической роли ДНК. Существуют две причины, по которым именно этот эксперимент был сразу признан в качестве решающего доказательства генетической роли ДНК, тогда как эксперименты Эвери, Мак-Леода и МакКарти по трансформации пневмококков не обратили на себя такого внимания. Во-первых, эксперимент был поставлен на бактериофаге, относительно которого было хорошо известно, что по характеру наследования признаков он аналогичен высшим организмам на фаге Т2 было продемонстрировано существование мутаций и, так же как у высших организмов, описана рекомбинация мутантных генов. Во-вторых, проводившиеся между 1944 и 1952 годами химические исследования состава ДНК многих различных организмов опровергли широко распространенное ранее представление о ДНК как о простом полимере, в котором один тетрануклеотид многократно повторяется во всех молекулах. Эти исследования обнаружили, что ДНК обладает достаточной химической сложностью, чтобы служить веществом наследственности. [c.97]

    Мутанты, которые приобрели какую-либо активность, отсутствующую у немутировавших клеток, могут быть выявлены прямым отбором на соответствующей среде. К таким мутантам относятся клетки, ставшие устойчивыми к различным антибиотикам, бактериофагам или химическим ингибиторам, обладающим в норме бактерицидным или бактериостатическим действием по отношению к немутировавшим родительским формам. Прямым отбором могут быть выделены также мутанты, способные к утилизации нетрадиционных источников углерода или азота. Благодаря высокой разрешающей способности прямого отбора (т. е. способности выявлять немногочисленные мутантные клетки на обильном фоне немутировавших клеток) при его использовании обычно не возникает необходимости в каких-либо приемах по обогащению культуры мутантами. К тому же, поскольку типы генетических функций, подлежащие прямому отбору, ожидаются как доминантные по отношению к их [c.28]

    Проявление других важных свойств клетки-хо-зяина зависит от того, какой используется вектор -плазмидный или фаговый. Например, если вектором служит ДНК бактериофага X, то хозяйские клетки не должны быть лизогенными по этому фагу, поскольку такие клетки устойчивы к повторному заражению, что обусловлено присутствием Х-ре-прессора—белка с1, который выключает экспрессию всех генов, необходимых для лизиса (разд. З.И.е). Плазмидные векторы обычно содержат маркерные гены, благодаря которым клетки-хозяева приобретают удобный для отбора фенотип, свидетельствующий о присутствии в них данного вектора. Поэтому исходные клетки-хозяева не должны иметь похожего фенотипа. Например, мутантные клетки [c.228]


Смотреть страницы где упоминается термин Бактериофаги мутантные: [c.254]    [c.13]    [c.114]    [c.260]    [c.306]    [c.119]    [c.184]    [c.184]    [c.193]    [c.375]    [c.285]    [c.305]    [c.356]   
Современная генетика Т.3 (1988) -- [ c.193 ]




ПОИСК







© 2025 chem21.info Реклама на сайте