Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Картирование генов клонированных

    Использование основных приемов работы с рекомбинантной ДНК и методик анализа белков и нуклеиновых кислот позволяет клонировать гены и изучать их организацию (блоттинг-гибридизация по Саузерну), строение мРНК (нозерн-блоттинг),. а также следить за уровнем экспрессии генов в различных условиях окружающей среды и даже в процессе развития. Например, в некоторых случаях уровни транскрипции гена определяют методом дот-блот-гибридизации выделенной РНК (разд., 6.3). Более подробные качественные исследования транскрипционной активности осуществляют с помощью нозерн-блоттинга (приложение 6 [I]). 5 - и З -концы транскриптов определяют, используя Sl-картирование [2, 56]. Однако такие методы анализа позволяют установить только строение транскрибируемой области или гена, а также механизмы процессинга транскриптов и их трансляции. Функцию любых участков вне транскрибируемой последовательности в некоторой степени можно изучать, сравнивая гены, обладающие сходными механизмами регуляции. При этом большинство предположений о воздействии на экспрессию гена остаются исключительно в области догадок. В этом случае генетическая трансформация предоставляет исследователю, работающему с растениями, уникальную-возможность непосредственно отвечать на фундаментальные вопросы, касающиеся регуляторной функции последовательностей, расположенных как в непосредственной близости, так и на некотором расстоянии от 5 - и З -концов транскрибируемого-гена. Используя разнообразные методы мутагенеза in vitro и технологию рекомбинантных ДНК, удается, модифгщировать клонированные гены и затем после введения мутантного гена-путем генетической трансформации обратно в растения анализировать влияние изменения этого гена на его экспрессию.. Подобные методики способствовали изучению нуклеотидных [c.307]


    Недостаток больших родословных для рецессивно наследуемых признаков, конечно, ограничивает применение метода геномной дактилоскопии, но не исключает полезность его использования для анализа рецессивных болезней. Если в родословной имеются близкородственные браки, возможно также картирование по гомозиготности [27]. Суть этого метода в следующем если оба родственных индивида несут редкий рецессивный ген то вероятнее всего они унаследовали его от единого предка [28]. Если индивиды находятся в достаточно далеком родстве, то общие для них последовательности будут составлять лишь малую долю генома. К тому же поскольку аллельные частоты фрагментов, образующих полосы в отпечатках (особенно боль-. ших фрагментов), очень малы, то маловероятно, что в геноме родственников эти фрагменты совпадут, если они произошли от разных предков. Если при близкородственном скрещивании больные дети имеют общую для их геномных отпечатков полосу в удвоенном количестве, а здоровые дети наследуют одинарную дозу или вовсе не имеют этой полосы, то тем самым подтверждается гипотеза о физическом сцеплении между участком, ответственным за признак, и данной полосой. Условившись об аллелизме, можно подсчитать шансы на сцепление, но, как уже отмечалось, для подтверждения или опровержения наличия сцепления фрагмент необходимо клонировать. [c.206]

    Для генетического анализа какого-либо вида организмов необходимо выявление мутантов с определенными физиологическими дефектами (отличиями от особей, принятых за дикий тип). До недавнего времени такие мутанты получали только в результате статистического (случайного, ненаправленного, общего) мутагенеза популяции организмов с последующей селекцией или отбором мутантов, обладающих характерным фенотипом. Измененный ген в выделенных мутантах может быть затем локализован на геноме путем комплементационного или рекомбинационного анализа с другими мутантами или методами физического картирования. Появление методов генетической инженерии позволило с помощью клонирования в молекулярных векторах извлекать отдельные гены даже из очень больших и сложно организованных геномов. Для клонированных генов может быть расшифрована последовательность нуклеотидов, а на ее основе — аминокислотная последовательность кодируемого белка. Более того, можно клонировать, а затем сравнивать последовательности гена (белка) дикого типа и мутантных форм. Исходя из полученной информации можно определить, какие изменения структуры гена (белка) приводят к тому или иному изменению фенотипа организма. [c.171]

    За последние годы в области медицинской геномики самые большие успехи были достигнуты при изучении моногенных болезней. На сегодняшний день известно более 3000 моногенных болезней, среди них такие, как фенилкетонурия, гемоглобинопатии, мышечные дистрофии и др. Для большого числа этих заболевании осуществлены картирование генов на хромосомах, их клонирование и анализ структуры (множество генов оказались новыми, неописанными ранее) и, наконец, установление мутаций, определяющих заболевание, а также анализ особенностей распределеня мутаций в различных популяциях. Многие гены, ответственные за наследственные болезни, были клонированы с использованием предварительно- [c.310]


    Помимо задачи картирования генов и установления их структуры, программа Геном человека ставит цель определить структурно-функциональную взаимосвязь генов. Для решения этой задачи используются совершенно новые подходы, которые просто невозможно было представить себе несколько лет на зад. Так, по дефектному ферменту, который является причиной наследственного заболевания, зная последовательность аминокислот в его составе, можно искусственно синтезировать информационную РНК, а затем соответствующий участок ДНК, идентифицировать его на хромосомной карте, выделить нативный ген и клонировать его вне организма, чтобы установить, в чем причина образования дефектного фермента. Таким способом были изучены гены дистрофии Дюше-на, рака молочной железы, мутантной фенилаланингидроксилазы, являющейся причиной наследственной фенилкетонурии, и ряда других генов. [c.73]

    Иногда для достижения поставленной цели применяется метод поэтапного клонирования. На первом этапе клонируется ген метилазы. Для определения предположительной локализации рестриктазного гена проводится физическое картирование последовательностей донорной ДНК, окружающих ген метилазы. В качестве зонда для блот-гибридизации используется ген метилазы [147, 148] или синтетические олигонуклеотиды [124]. Донорная ДНК перед лигированием обрабатывается отобранными таким образом рестриктазами с целью вырезания фрагмента предположительно содержащего не только ген метилазы, но и рестриктазы. Однако не всегда реализация такого подхода дает положительный результат. Поучителен в этом отношении пример по клонированию генов гт Dde I [124]. В этом случае на первом этапе удалось клонировать только ген метилазы. Впоследствии это нашло объяснение в том, что при получении банка генов провели исчерпывающий гидролиз донорной ДНК рестриктазой Hind ni, которая как потом оказалось имеет сайт в гене рестриктазы. Для картирования генов гт Dde I методом блот-гиб-ридизации в качестве молекулярных зондов применили метилазный ген и смесь синтетических олигонуклеотидов, имеющих гомологию с геном рестриктазы. Структура олигонуклеотидов была предсказана на основе анализа аминокислотной последовательности N конца рестриктазы, выделенной в гомогенном состоянии из природного продуцента. В результате проведенных исследований было определено, что гены гт Dde I расположены на Pst I фрагменте хромосомной ДНК величиной 4,8 кб. Однако попытки клонировать этот фрагмент не дали [c.187]

    Современные ВАС-векторы позволяют клонировать фрагменты ДНК длиной до 300 т.п.о. и выше. Рекомбинантные молекулы вводятся в клетки Е. соИ с помощью электропорации (см. раздел 3.8), причем эффективность образования трансформантов в 10-100 раз выше, чем при обычной трансформации сферопластов дрожжей векторами семейства YA . Это позволяет уменьшить исходное количество ДНК, необходимое для конструирования репрезентативных клонотек генов (см. гл. 4). При скрининге таких клонотек используются традиционные методы работы с бактериальными колониями. В отличие от Y АС-ДНК, которая находится в клетках дрожжей в линейной форме, ВАС-векторы со вставками, как и традиционные F -факторы, существуют в бактериальных клетках в виде кольцевых суперскрученных молекул. Это облегчает их выделение и последующую работу с рекомбинантными молекулами ДНК в растворе, а кроме того, допускает повторное введение в бактериальные клетки этих ДНК, выделенных мини-препаративными методами. Поскольку рекомбинантные ВАС-векторы существуют в бактериальных клетках в виде одной копии, исключаются совместное клонирование в одной клетке разных фрагментов ДНК и образование химерных молекул, что очень важно для физического картирования больших геномов методами снизу вверх . Весьма существенным свойством системы клонирования, основанной на векторах семейства ВАС, является ее генетическая стабильность. Исходная структура клонированных фрагментов ДНК в пределах точности использованных методов сохраняется в таких векторах даже после 100 серийных пересевов бактериальных клеток, содержащих рекомбинантные молекулы ДНК. Все вышеперечисленные свойства переводят векторы ВАС в разряд сверхъемких векторов нового поколения. [c.94]

    Важнейшую роль в структурных исследованиях генома играет изучение его полиморфизма. Этот раздел молекулярной генетики является основой для понимания принципов молекулярной эволюции, механизмов возникновения патологических мутаций, для оценки факторов риска при воздействии потенциальных токсических агентов окружающей среды на человеческий организм, наконец, для понимания основ различной индивидуальной восприимчивости лекарств. Эти исследования получили новый импульс с открытием полиморфных мини- и микросателлитов, которые позволили осуществить тонкое генетическое картирование генома и в конечном счете создать интегрированные карты генома, объединяющие физические и генетические карты генома человека в единую систему. Это в свою очередь привело к развитию методов позиционного клонирования, которые позволяют быстро клонировать гены, начав с исследования их сегрегации в семьях. [c.7]


    Используя клонированные гены, уже картированные с помощью рекомбинантных методов, можно сопоставлять физическую и генетическую карты, как в случае с Е. соИ. Относительно подробные генетические карты построены для таких организмов, как дрожжи, нематода и D. melanogaster, и здесь такое сравнение может оказаться весьма продуктивным. У D. melanogaster корреляция упрощается благодаря наличию обширных цитогенетических данных. Комбинированные молекулярно-генетические карты позволяют клонировать гены, связанные с определенными фенотипом и локусом, но продукт которых неизвестен (например, так был клонирован ген per D. melanoijaster, рис. 6.39). [c.353]


Смотреть страницы где упоминается термин Картирование генов клонированных: [c.468]    [c.457]    [c.333]    [c.155]    [c.182]    [c.354]    [c.44]    [c.416]    [c.333]   
Современная генетика Т.3 (1988) -- [ c.310 ]




ПОИСК





Смотрите так же термины и статьи:

Клонированные гены



© 2024 chem21.info Реклама на сайте