Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Олигонуклеотиды структура

    Нуклеаза стафилококков является примером фосфодиэстеразы с малой субстратной специфичностью, поскольку она расщепляет ДНК, РНК и олигонуклеотиды до З -мононуклеотидов [31]. Нуклеаза стафилококков получена в кристаллическом виде определены ее аминокислотная последовательность и трехмерная структура. Необычность фермента заключается в том, что для проявления активности он нуждается в ионах кальция. Ион металла присоединяется к нуклеазе только в присутствии субстрата или ингибитора, например тимидин-3, 5 -дифосфата. Нуклеаза стафилококков действует как эндонуклеаза, но после того, как осуществлены разрывы цепи, она может действовать как экзонуклеаза. [c.145]


    Изучение олигонуклеотидов, выявившее, в частности, различия АДОВ и КД для 16 динуклеотидов [152, 153], дает основания надеяться на получение сведений о первичной структуре фрагментов нуклеиновых кислот. По-видимому, оптическую активность одноцепочечных полимеров можно представить в виде суммы вкладов димеров [154]. [c.320]

    Наиболее устойчива структура с наинизшим значением АГ. Образование пары А — У дает АР = — 1,2 ккал/моль. Примем это значение за число стабильности р, равное - -1. Тогда из данных, относящихся к температурам плавления и термодинамическим характеристикам двуспиральных олигонуклеотидов, получаются следующие значения р-. 1) пара А —У -Ы 2) пара Г — Ц -]-2 3) пара Г — У 0 4) шпилечные петли от —5 до —7  [c.572]

    Принцип блочного метода определения последовательности показан на рисунке 175. Олигонуклеотид неизвестной структуры расщепляется двумя способами X и Y, различающимися по специфичности. При расщеплении по способу X образуются три олигонуклеотида, а по способу Y — два. Структуры всех полученных фрагментов устанавливаются соответствующим методом. Далее проводится сопоставление структур олигонуклеотидов У со структурами X с целью нахождения частично совпадающих (перекрывающихся) последовательностей и реконструкции таким образом исходной цепи. Поскольку каждый полученный олигонуклеотид представляет собой блок, из суммы которых строится исходная структура, метод называется методом перекрывающихся блоков. [c.309]

    Определение строения. олигонуклеотидов. Во всех совр>еменных способах определения первичной структуры нуклеиновых кислот первостепенную роль играют методы введения радиоактивных меток а 5 - и З -концевые звенья. Чаще всего роль концевой метки играет фосфатная группа, содержащая но иногда в качестве метки используют также тритий ( Н) или нод ( 1). [c.316]

    B. Исчерпывающий гидролиз фосфодиэстеразой змеиного яда дал единственный нуклеозид — цитидин. Отсюда следует, что олигонуклеотид содержит на 5 -конце цитидин и, таким образом, его структура С(А,и,11-,С)Ср. [c.330]

    Рентгеноструктурный анализ комплексов таких соединений с синтетическими двухцепочечными олигонуклеотидами показывает, что плоские ароматические кольца красителей внедряются между парами оснований двойных спиралей. Механизм внедрения предполагает проникновение молекулы красителя между парами оснований в момент возникновения локального нарушения структуры, при этом водородные связи между парами оснований сохраняются, тогда как стэкинг -взаимодействия нарушаются. [c.346]


    Очень важным является использование синтетических олигонуклеотидов в качестве гибридизационных проб (зондов) для поиска нужных рекомбинантных колоний в генноинженерных экспериментах. Олигонуклеотид синтезируется в соответствии с данными, полученными из известной структуры белка илн ДНК, и после введения концевой метки используется для гибридизации [c.378]

    В последние годы параметры В-, А- и Z-форм двойных спиралей ДНК удалось уточнить высокоразрешающим рентгеноструктурным анализом монокристаллов самокомплементарных синтетических олигонуклеотидов, образующих короткие двойные спирали (дуплексы). При этом можно оценить конформацию каждой нуклеотидной пары в дуплексе. Оказалось, что внутри двойной спирали сушествует конформационная микрогетерогенность в зависимости от последовательности нуклеотидных пар конформации сахаров в нуклеотидных остатках несколько отличаются. 2 го приводит к отличиям в межнуклеотидных расстояниях вдоль оси спирали и к различному наклону пар оснований к этой оси. Такие зависящие от первичной структуры различия во вторичной структуре ДНК, по-видимо.му, чрезвычайно важны для ее функционирования. [c.29]

    Идентификация модифицированных нуклеотидных остатков в полинуклеотидной цепи РНК долгое время была задачей особой трудности. С появлением современных методов секвенирования нуклеиновых кислот она существенно упростилась. Модификацию РНК или ее расщепление ферментами ведут таким образом, чтобы (как и при секвенировании) было затронуто в среднем только одно звено на молекулу (в чем есть дополнительный смысл, так как множественная модификация РНК искажает ее структуру). Далее, если изучается РНК небольшого размера или сегмент РНК, примыкающий к одному из ее концов, то этот конец метят радиоактивной меткой и задача идентификации модифицированного основания (после расщепления соответствующего звена) или атакованной нуклеазой межнуклеотидной связи сводится, как и при секвенировании, к определению длины фрагмента по его подвижности в высокоразрешающем электрофорезе в геле. В том случае, когда анализируемый район удален от концов молекулы на расстояние больше 150—200 н. о., используют реакцию обратной транскрипции (см. гл. 13). Для этого синтезируют олигонуклеотид, комплементарный участку РНК, расположенному вблизи от анализируемого района с З -концевой стороны молекулы, и далее используют его как праймер для обратной траискриптазы. Так как этот фермент останавливается на модифицйрованных остатках матрицы (или в том месте, где расщеплена фосфодиэфирная связь), то вновь по длине образующегося фрагмента можно определить положение модифицированного звена в РНК. [c.40]

    Очистка и фракционирование длинных олигонуклеотидов (до 17 остатков) методом ионообменной ЖХВД требует принятия мер, предотвращающих образование локальных вторичных структур за счет комплементарных участков. Для этой цели было предложено вести элюцию с колонки Partisil 10-SAX линейным градиентом концентрации фосфатного буфера (О—0,3 М), pH 6, в 30%-ном (а в некоторых случаях 60%-ном) растворе формамида при комнатной температуре [Newton et al., 1983]. [c.322]

    Таким образом, продвигаясь сверху вниз, по картине относительного сдвига пятен непрерывно удлиняющихся на одно звено фрагментов можно расшифровать всю первичную структуру олигонуклеотида. Здесь надо сделать два дополнительных замечания. Во-первых, мы ничего не узнаем таким образом о природе 5 -концевого нуклеотида, но его легко определить рассмотренными ранее методами ТСХ нуклеотидов. Например, после исчерпывающего гидролиза фосфодиэстеразой змеиного яда только этот нуклеотид будет представлен иуклеозиддифосфатом вида pNp. Во-вторых, метод не позволяет обнаружить модифицированные (минорные) нуклеотиды. Их приходится идентифицировать также методами ТСХ нуклеотидов нли нуклеозидов после исчерпывающего ферментативного гидролиза, как описано выше, где, в частности, приводилась и методика, используемая в цитируемой работе. [c.505]

    Наиб, интенсивно в 70-х гг, развивались синтез олигонуклеотидов и генов исследования клеточных мембран и полисахаридов анализ первичной и пространста структур белков. В кач-ве примера можно указать на успешное изучение структуры важных ферментов (трансаминаза, Р-га-лактозидаза, ДНК-зависимая РНК-полимераза), защитных белков (у-глобулины, интерфероны), мембранных белков (аденозинтрифосфатазы, бактериородопснн). Большое значение приобрели работы по изучению строения и механизма действия пептидов-регуляторов нервной деятельности (т, наз. нейропептиды). [c.288]

    Далее, возможна прямая локализация спаренных участков цепи. Один из наиболее результативных подходов состоит в том, что после переваривания РНКазой, гидролизующей однотяжевые участки РНК, получающиеся двуспиральные фрагменты разделяются в электрофорезе сначала в неденатурирующих условиях (первое направление), а затем в условиях диссоциации двуспиральных комплексов (второе направление) таким образом, каждая полоса первого направления, представляющая собой двойную спираль, разделяется во втором направлении на два пятна, представляющих собой комплементарные тяжи, которые идентифицируются и локализуются на первичной структуре РНК. Таким путем удается выявить не только смежные (вдоль цепи) комплементарные участки, но и комплементарные взаимодействия между удаленными участками цепи РНК. Другой подход, особенно эффективный в выявлении дальних взаимодействий, состоит в фотоактивируемых сшивках оснований спаренных тяжей в составе структуры РНК с последующей идентификацией сшитых олигонуклеотидов. [c.74]


    Особый интерес представляют, конечно, взаимодействия рибосомных белков с высокополимерными рибосомными РНК (16S и 23S РНК прокариот или 18S и 28S РНК эукариот), ибо они представляют собой основной ковалентный каркас и структурное ядро рибосомных субчастиц. По-видимому, больщинство рибосомных белков контактируют и так или иначе взаимодействуют с высокополимерными рибосомными РНК. Однако среди них можно выделить специальные сердцевинные РНК-связывающие белки, которые прочно взаимодействуют с соответствующей рибосомной РНК, более или менее независимо от других белков. Такими белками малой (30S) рибосомной субчастицы Е. соИ, независимо вступающими в комплекс с 16S РНК, являются S4, S7, S8, S15, S17 и S20. Каждый из них связывается только со специфическим местом на 16S РНК, узнавая его нуклеотидную последовательность и пространственную структуру. Эту последовательность можно выявить таким путем изолированный белок добавляется к рибосомной РНК, в результате чего образуется специфический белок-РНК-комплекс комплекс переваривается рибонуклеазой, так что негидролизованной остается лищь та часть нуклеотидной последовательности, которая закрыта белком эта защищенная последовательность определяется и, таким образом, идентифицируется. Другой метод локализации белков на первичной структуре рибосомной РНК — ковалентная сщивка (например, фотоиндуци-рованная) белка с РНК непосредственно в составе рибосомы, с последующим удалением несшитых белков, перевариванием РНК с помощью РНКазы и идентификацией сшитого олигонуклеотида. Расположение мест связывания вышеуказанных шести белков вдоль цепи 16S РНК схематически показано на рис. 59, а. Видно, что белки [c.100]

    После идентификации токсинового гена В. thuringiensis бьша определена первичная структура кодируемого им белка. Сравнение аминокислотных последовательностей разных белковых токсинов показало, что белки некоторых штаммов имеют одинаковый домен, ответственный за токсичность. Кроме того, был субклонирован сегмент полной кодирующей последовательности, с которого синтезировался укороченный белок, в полной мере сохранивший свою токсичность. Таким образом, при последующих генноинженерных манипуляциях могут использоваться интактный ген токсина, его фрагмент или химически синтезированный олигонуклеотид. [c.336]

    Несмотря на многообразие и высокую разделяющую способность методов, описанных в 7.1, они оказываются бессильными при решении задач по выделению индивидуальных компонентов из сложных биологических смесей. Уже отмечалось, что иммуноглобулиновая фракция сыворотки крови состоит из тысяч различных антител, которые весьма сходны по общей структуре, что не дает надежды разделить смесь на индивидуальные компоненты традиционными методами, основанными на различиях тех или иных физико-химических характеристик компонентов. Единственным заведомым отличием каждого индивидуального иммуноглобулина является его специфичное сродство к определенному антигену. То же самое имеет место в случае смеси мРНК, которые несущественно различаются по нуклеотидному составу. Тем не менее они имеют различные нуклеотидные последовательности и соответственно могут обладать селективным сродством к олигонуклеотидам или нуклеиновым кислдтам с комплементарными последовательностями. [c.246]

    Одно из более сложных применений молекулярной селекции нуклеиновых кислот связано с попытками создать на этой основе рибозимы с новыми каталитическими функциями. С этой це.пью необ.ходимо создать новые методы селекции. Как уже говорилось в 6.4, открытие рибозимов вызвано повышенный интерес к возможности участия рибозимов на первых этапах эволюции. Для этой цели необходимы рибозимы с синтетическими функциями. Ниже приводится пример получения с помощью молекулярной селекции нуклеиновых кислот фермента, катализирующего реакцию соединения двух олигорибоиуклеотидов, один из которых (донорный) несет на 5 -конце трифосфатную группу, с помощью которой с отщеплением пирофосфата осуществляется образование новой межнуклеотидной связи с 3 -ОП-группой акцепторного олигонуклеотида. Эта реакция по своему типу идентична реакции элонгации полинуклеотидной цепи, в ходе которой осуществляется перенос нуклеотидного остатка от нуклеозид-5 трифосфата на 3 -ОН-группу растущей полинуклеотидной цепи. С.хема селекции представлена на рис, 87. Для большей эффективности этого процесса трифосфатная группа и 3 -ОН-группа донора долясны быть сближены. Это можно сделать создав конструкцию (рис. 87, а), в которой эти две группы оказываются комплементарными соседним нуклеотидам стебля в шпилечной структуре. Па 5 -конце акцепторного [c.307]

    Методом рентгеноструктурного анализа монокристаллов установлена детальная пространственная структура сотен белков, значительного числа олигонуклеотидов, нескольких транспортных рибонуклеиновых кислот. Однако встает вопрос, в какой мере установленная структура соответствует той, которая имеет место в функционально активном состоянии биополимера в растворе или в составе живого организма. Априорно нельзя ни исключить, ни оценить масштаб искажения структуры в результате формирования кристаллической решетки. Поэтому весьма существенно располагать независимой инс1юрмацией о геометрии молекулы биополимера, пусть не столь полной, по зато соотиетствующей ее состоянию в растворе. Из экспериментальных методов наиболее П1ючные позиции завоевывают подходы, основанные на использовании ядерною матитпого резонанса, в первую очередь ядерного эффекта Оверхаузера. [c.313]

    Олигонуклеотиды или нуклеиновые кислоты, способные взаимодействовать с определенными, имеющими биологически< смысл участками нуклеиновой кислоты, называют анти-смысловыми. Использование таких аптисмыс-лових структур может привести к подавлению биологической функции соответствующей нуклеиновой кислоты-мишени, в связи с чем на них возлагаются большие надежды как на потенциальные противовирусные и противоопухолевые средства (в частности, в связи с проблемой СПИДа). Развитие таких подходов стало в последнее время одной из наиболее бурно развивающихся областей биотехнологии. [c.331]

    Одним из вариантов п])именеиия антисмыс-ловых подходов является аффинная модификация нуклеиновых кислот. Поскольку принципы формирования двуспиральных и трехспиральных структур в настоящее время хорошо известны, не представляет труда выбрать в олигонуклеотидах точки, несущественные для образования таких структур. Например, присоединение реакциопноспособных групп по концевому фосфату не должно приводить к нарушению взаимодействий между цепями, поскольку эти взаимодействия обусловлены в основном образованием водородных связей между гетероциклическими фрагментами. Более того, как видно из рис. [c.331]

    Изучение структур геномов различных организмов поначалу создало представление о незыблемости локализации тех или иных генов в хромосомах. Это представление было пересмотрено после открытия Б. Мак Клинток, которая в опытах с кукурузой показала, что гены могут перемещаться в пределах генома и влиять на механизмы экспрессии. В дальнейшем было установлено, что это явление характерно для многих эукариотических и прокариотических клеток. Транспозон Е. соИ представляет собой олигонуклеотид, включающий в себя ген фермента транспозазы, ответственной за перемещение транспозона, а также короткие концевые нуклеотидные последовательности. Транспозоны эукариотических клеток гораздо больше и включают в себя набор различных генов. Внутригеномное перемещение и встраивание транспозонов требует разрыва и последующего сращивания цепи ДНК. Репликация транспозона в одном сайте цепи, а затем перемещение и репликация в другом создают благоприятные возможности для дальнейших гомологичных рекомбинаций в клетке. Следует отметить, что транспозоны, встраиваясь в случайные сайты хромо- [c.456]

    В блочном методе определения последовательности нуклеиновых кислот весьма существенна методология структурного анализа. В одном из возможных вариантов используется полное расщепление полинуклеотидной цепи двумя (или более) ферментами с различной специфичностью. В случае РНК это может быть осуществлено различными рибонуклеазами, например гидролиз последовательно рибонуклеазой Т,, а затем — панкреатической рибонуклеазой. Структуры полученных олигонуклеотидов сравниваются для поиска перекрывающихся последовательностей Если это оказывается недостаточным, используется третья РНаза. [c.314]

    Для определения первичной структуры коротких олигонуклеотидов (до 15 — 20 звеньев) обычно используют метод блуждающего пятна , или сзнгерпринта . Меченный по одному из концов олигонуклеотид гидролизуется экзонуклеазой с противоположного конца в условиях неполного расщепления, так что образуется набор всех возможных фрагментов. При расположении полученных таким путем олигонуклеотидов в порядке возрастания длины каждые два соседних продукта будут отличаться друг от друга на одно концевое звено. Меченое же звено у всех олигонуклеотидов является общим (рис. (78). [c.318]

    Быстрые методы определения последовательности не решают всех задач, стоящих перед исследователем первичной структуры нуклеиновых кислот, поскольку они не дают информации о Положении и природе минорных компонентов нуклеиновых кислот- Такие задачи встречаются при изучении структуры тРНК. В этих случаях сохраняют свое значение старые методы определения последовательности, заключающиеся в исчерпывающем нли частичном гидролизе рибонуклеазами, выделении индивидуальных олигонуклеотидов, определении их клеотидного состава и идентификации минорных компонентов [c.329]

    Качественного представления о структуре ДНК недостаточно яля понимания многих вслектов ее функционирования, в частности механизмов взаимодействия с белками. Для этого необходима информация о деталях структуры и возможностях ее изменения под действием различных факторов В настоящее время накоплен очень большой материал по дифракции рентгеновских лучей нв ориентированных волокнах ДНК и по строению моно- и олигонуклеотидов в кристаллах, позволяющий дать сравнительно точное описание возможных структур ДНК. Известно, что существует большой набор различных конформаций ДНК, которые меняются и переходят друг в друга в зависимости от внешних условий. [c.335]


Смотреть страницы где упоминается термин Олигонуклеотиды структура: [c.6]    [c.20]    [c.75]    [c.199]    [c.447]    [c.502]    [c.301]    [c.20]    [c.142]    [c.568]    [c.225]    [c.570]    [c.172]    [c.172]    [c.168]    [c.299]    [c.331]    [c.333]    [c.314]    [c.325]    [c.379]    [c.623]   
Биоорганическая химия (1987) -- [ c.316 , c.319 , c.322 , c.330 , c.332 , c.335 , c.346 , c.348 ]

Химия нуклеозидов и нуклеотидов (1966) -- [ c.395 , c.424 ]




ПОИСК





Смотрите так же термины и статьи:

Олигонуклеотиды



© 2024 chem21.info Реклама на сайте