Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Дюшенна мышечная дистрофия

    Выявление гетерозигот по мышечной дистрофии Дюшенна [1119 1221]. Определение носителей дефектного гена особенно важно с практической точки зрения при Х-сцепленной мышечной дистрофии Дюшенна (31020). Это тяжелое неизлечимое заболевание, которое неизбежно ведет к ранней смерти. Вот почему у женщин с высоким риском рождения больного мальчика беременность разумнее прекратить, если установлено, что эмбрион мужского пола. Из этого следует, что риск рождения больного и статус носителя должны быть опреде- [c.58]


    Благодаря использованию клонированных фрагментов удается провести генетическое картирование (т.е. составить генетическую карту организма), установить хромосомную локализацию многих генетических нарушений, вызывающих такие заболевания, как серповидно-клеточная анемия — СКА (11-я хромосома), фенилкетону-рия (12-я хромосома), мышечная дистрофия Дюшенна (Х-хромосома) и др., проводить пренатальную диагностику. [c.91]

    Благодаря использованию клонированных фрагментов установлена хромосомная локализация многих генетических нарушений, для которых не удавалось выявить недостаточности по каким-либо специфическим белкам. К таким заболеваниям относятся хорея Гентингтона (хромосома 4) муковисцидоз (хромосома 7) поликистозная нефропатия взрослых (хромосома 16) мышечная дистрофия Дюшенна (X-хромосома). Если область ДНК, в которой локализован дефект, имеет характерную структуру гена (рис. 36.1), то можно синтезировать этот ген, ввести в соответствующий вектор, добиться экспрессии и изучать функцию. Кроме того, можно синтезировать олигопептид, последовательность аминокислот в котором определяется согласно установленной открытой рамке считывания в кодирующей области. Антитела, полученные против этого пептида, представляют собой инструмент для выявления экспрессии данного пептида (или констатации ее отсутствия) у здоровых и больных людей. [c.46]

    Мышечная дистрофия Дюшенна [c.162]

    Х-сцепленных рецессивных болезней. Если инактивация происходит достаточно рано во время эмбрионального развития-в то время, когда количество клеток данной ткани еще довольно невелико,-то и в этом случае должны иногда появляться пораженные гетерозиготы. Они являются крайними вариантами, которые образуют хвост биномиального распределения всех паттернов инактивации. Однако гипотеза случайной инактивации не предсказывает накопления таких случаев среди сибсов. Тем не менее накопление наблюдалось в случае мышечной дистрофии Дюшенна [451] и в одной семье со сфинголипидозом (болезнью Фабри) [488]. В этой семье девять гетерозиготных дочерей больного мужчины можно было разделить на два класса в одной группе у четырех дочерей активность а-га-лактозидазы А достигала 50%, в то время как в другой группе активность составляла 20% (активность определяли в лейкоцитах). Авторы обсуждают гипотезу, согласно которой имеется ген, детерминирующий предпочтительную инактивацию Х-хромосомы с нормальным аллелем. Случаи гетерозиготного проявления мышечной дистрофии Дюшенна можно, вероятно, объяснить таким же образом. Точное определение генной активности у гетерозигот по Х-сцепленным болезням способствует накоплению и обобщению подобных сведений. [c.108]

    Пример сестра больного мужского пола с мышечной дистрофией Дюшенна, у которого поражен дядя (рис. П.8.2). Среднее значение креатинкиназы сестры на основе трех измерений составляет 100 ед./л (95% от нормы для взрослых женщин). [c.237]


    Все приведенные расчеты рисков (быть носителем) основывались только на информации о родословной. На практике для уточнения риска следует использовать дополнительные данные, которые можно получить из биохимических и молекулярных исследований. При мышечной дистрофии Дюшенна иногда повьшгается уровень креа- [c.236]

    Мышечная дистрофия Дюшенна Прогрессирующая слабость мышц [c.485]

    Особенно удобны большие группы родственников, но на практике они редко встречаются. Х-сцепленные заболевания более предпочтительны для анализа, чем аутосомные, поскольку мужчины имеют только одну Х-хромосому, что упрощает точное приписывание сцепленного маркера гену заболевания (рис. 3.28). При Х-сцепленных летальных болезнях, таких, как мышечная дистрофия Дюшенна, и в меньшей степени при гемофилии (разд. 9.1) имеется много новых мутаций. Часто невозможно определить, где появились новые мутации в зародышевых клетках родительского или прародительского поколения. Если мутация произошла у родителей, то сестра больного не рискует оказаться носительницей, однако риск будет составлять 50%, если мутация произошла в прародительском поколении. Решение этой проблемы может оказаться трудным, поскольку биохимически тестируемый носитель часто не является достаточно информативным по ДНК-маркерам (приложение 8, разд. 4.2. 2.8). [c.206]

    Для мышечной дистрофии Дюшенна (31020) известно по крайней мере 11 оценок частот мутаций, полученных из данных о разных популяциях. Как и в случае ретинобластомы, проблемы, связанные с идентификацией заболевания, преодолеваются довольно легко. Диагноз может быть поставлен без особых затруднений [1221]. Применение непрямого метода в данном случае, очевидно, вполне обосновано. Больные никогда не имеют детей. Следовательно, против этой мутации действует очень сильный отбор. По порядку величины все десять оценок удивительно хорошо согласуются друг с другом [c.166]

    В случае доминантных мутаций у человека это предположение не поддается прямой проверке, так как мы не можем определить, где возникла та или иная отдельная мутация, проявляющаяся в фенотипе спорадического больного,-в мужской или в женской зародышевой клетке. Однако для мутаций, сцепленных с Х-хромосомой, такая проверка возможна. Для трех Х-сцепленных болезней-гемофилии А, синдрома Леша—Найхана и мышечной дистрофии Дюшенна-имеется достаточный фактический материал анализ данных по каждому из этих заболеваний привел, однако, к противоречивым результатам. [c.178]

    Методы коррекции, которые будут описаны ниже, могут считаться надежными, только если вероятность регистрации по-следуюпщх сибсов не зависит от регистрации первого. В приведенном выше примере медицинского освидетельствования призывников это может быть и так. Однако, как правило, работа начинается с обследования стационарных больных или какой-либо другой группы лиц, подвергаемых медицинскому контролю. В этом случае в соответствии с общей практикой, если один заболевший ребенок уже прошел успешный курс лечения, то его сибс, заболевший позже, скорее попадет в ту же больницу. Однако возможна и противоположная тенденция. Беккер (1953) [564], например, собрал все случаи Х-сцепленной рецессивной мышечной дистрофии Дюшенна в ограниченной области на юго-западе Германии. У него были веские основания считать, что зарегистрированы все больные. Тем не менее пораженные братья, которые заболевали не первыми в своем сибстве, как правило, учитывались не в качестве пробандов (т.е. через больницу или врача), а через первого пробанда в семье. В беседах с родителями Беккер нашел причину этой необычной ситуации. Когда заболевает первый ребенок, родители обычно обращаются к врачу. Однако затем они убеждаются в том, что исследования и терапевтические процедуры не оказывают никакого влияния на развитие заболевания, и поэтому воздерживаются от направления второго заболевшего ребенка в больницу. [c.184]

    ДНК-варианты в анализе сцепления. Большое количество полиморфных локусов ДНК дает в руки исследователей много новых маркеров. Когда имеют дело с ген-специфическими ДНК-зондами (табл. 2.13), такими, как, например, в [З-глоби-новом локусе, физическое расстояние от сайта полиморфизма до сайта [З-гемогло-бинопатии настолько мало, что возможностью рекомбинации между ними можно пренебречь. С другой стороны, сцепление между локусом генетического заболевания и анонимным ДНК-зондом вряд ли будет очень тесным. То же самое рассуждение применимо для сцепления, установленного между ген-специфическим зондом и локусом заболевания, которое биохимически не связано с этим зондом. При таких обстоятельствах обычно будут обнаруживаться кроссоверы между ДНК-маркером и геном заболевания. Примерами могут служить маркеры болезни Гентингтона (маркер 08, 5сМ) и мышечной дистрофии Дюшенна (Х-сцепленные маркеры, 15 сМ) [369 667, 2306]. [c.205]

    Хотя показано, что Р-талассемия обусловлена по меньшей мере тридцатью точечными мутациями, в каждой отдельной популяции найдено лишь небольшое их число. В некоторых популяциях, например среди жителей Сардинии, за подавляюшее большинство случаев р-талассемии ответственна всего одна мутация. В такой популяции использование олигонуклеотидных зондов для пренатальной диагностики р-талассемии особенно удобно. Однако для генетических нарушений с высокой частотой новых мутаций, таких как гемофилия или мышечная дистрофия Дюшене, олигонуклеотидный метод непригоден и приходится прибегать к косвенному методу, в котором используется полиморфизм ДНК. [c.72]

    Ген HPRT экспрессируется в клетках амниотической жидкости, поэтому недостаточность гипоксантин-гуанин—фосфорибозилтрансферазы удается диагностировать с помощью амниоцентеза. Этим дефект HPRT в корне отличается от других патологических состояний, наследуемых сцепленно с Х-хромосомой, например гемофилии или мышечной дистрофии Дюшенна, при которых биохимический дефект не проявляется в клетках амниотической жидкости. [c.47]


    Сцепленная с Х-хромосомой мышечная дистрофия Дюшенна (возрастание содержания креатинфосфо-киназы в сыворотке) [c.55]

    Преобладающее большинство оценок, приведенных в табл. 5.8, получено с помощью прямого метода. Непрямой метод использовался главным образом в случае рецессивных болезней, сцепленных с Х-хро-мосомой. Плодовитость больных гемофилией в то время, когда собирались эти данные, была существенно ниже средней. Плодовитость падает до нуля при мышечной дистрофии Дюшенна и в случае двух болезней- пигментного дерматоза и рото-пальцелицевого дизостоза, гемизиготы по генам которых летальны. Поэтому соответствующие оценки могут считаться довольно надежными. [c.161]

    Существует лишь одна наследственная патология-мышечная дистрофия Дюшен- [c.167]

    Отсутствие различий между частотами мутаций у индивидов разного пола в случае мышечной дистрофии Дюшенна. Четвертая болезнь, для которой имеются достаточно большие, хорошо изученные популяционные выборки,-это мышечная дистрофия Дюшенна (31020). При этом заболевании относительная плодовитость (/) пораженных также равна 0. Они никогда не имеют детей, и, если частоты мутаций одинаковы у индивидов разного пола, одна треть всех пораженных, вероятно, будут сыновьями матерей, гомозиготных по нормальному аллелю. Эту проблему анализировали на основе данных о трех обширнейших популяционных выборках. После коррекции на очевидное смещение выяснилось, что эти данные удивительно хорошо согласуются с ожидаемой зависимостью т = Тогда казалось, что частоты соответствующих мутаций в мужских и женских половых клетках одинаковы. С тех пор опубликовано много новых данных и появились методы тестирования на гетерозиготность (приложение 8). Некоторые авторы считают, что в случае дистрофии Дюшенна частота мутаций в женских половых клетках ниже, чем в мужских [1404 1430], высказывается и противоположная точка зрения [1405]. Однако основная часть имеющихся на сегодня данных свидетельствует о приблизительном равенстве мутационных частот у индивидов разного пола [1413 1432]. Мышечная дистрофия Дюшенна характеризуется необычайно высокой частотой соответствующих мутаций и необычным распределением мутационных частот по полу. Вероятно, соответствующий ген очень велик по размеру и имеет несколько более или менее гомологичных по структуре псевдогенов. Это может послужить причиной частого неравного кроссинговера (см. разд. 3.5.8), приводящего к возникновению мутантных фенотипов [1700]. Поскольку ген. [c.181]

    Такое простое вычисление справедливо только, если выполняются упомянутые выше два условия (ц = V, / = 0) и существует генетическое равновесие между мутационным процессом и отбором. Так бывает при мышечной дистрофии Дюшенна-наит более распространенной Х-сцепленной рецессивной болезни во многих популяциях. Для других заболеваний, таких, как гемофилия А и недостаточность гипоксантинфос-форибозил-трансферазы, частоты мутаций оказываются намного выше в мужских гаметах, чем в женских (разд. 5.1.3.4). Здесь долю т нужно вычислять на основе эмпирических данных. Приемлемой аппроксимацией будет V = 10 X ц, поскольку уровень мутаций в мужских гаметах примерно в 10 раз вьпне, чем в женских. При отсутст- [c.235]

    Как отличить здоровых людей от носителей с помощью лабораторных тестов Поскольку с помощью лабораторного показателя мы не можем это сделать однозначно (т. е. не существует такого значения, выше или ниже которого мы могли бы с уверенностью говорить о норме или носительстве), следует учитывать, что, например, в случае мышечной дистрофии Дюшенна около одной трети носителей имеют нормальный уровень креатинкиназы (т.е. ниже двух стандартных отклонений от популяционной средней). Так, если из данных по родословной риск бьггь носителем составляет 1/2, а уровень креатинкиназы нормальный , то суммарный риск можно оценить как 1/4, т.е. 25% (рис. П.8.6)  [c.237]

    Таблш а П.8.2. Вероятность носительства по гену мышечной дистрофии Дюшенна при разных уровнях сывороточной креатинкиназы [c.237]

Рис. П.8.6. Уровень креатинкиназы при мышечной дистрофии Дюшенна. Пример информация из родословной дает риск носительства 0,5 и неносительства 0,5. Линия (А) делит общее пространс7во вероятностей на две равные по размеру части. Поскольку две трети носителей имеют повьппенный уровень креатинкиназы, то вероятностное пространство делится линиями (Б) и (В) на три равные части. Носители, которые имеют аномальный уровень фермента, локализуются в области с косой штриховкой (это 2/3 носителей). Среди тех, кто имеет нормальные уровни креатинкиназы, один из четырех (белые квадраты) будет носителем. Рис. П.8.6. <a href="/info/1354892">Уровень креатинкиназы</a> при мышечной дистрофии Дюшенна. <a href="/info/1714061">Пример информация</a> из родословной дает <a href="/info/1353948">риск носительства</a> 0,5 и неносительства 0,5. Линия (А) <a href="/info/1748138">делит общее</a> пространс7во вероятностей на две равные по <a href="/info/171823">размеру части</a>. Поскольку две трети носителей имеют повьппенный <a href="/info/1354892">уровень креатинкиназы</a>, то <a href="/info/880869">вероятностное пространство</a> делится линиями (Б) и (В) на три <a href="/info/975746">равные части</a>. Носители, которые имеют аномальный <a href="/info/1320612">уровень фермента</a>, локализуются в области с косой штриховкой (это 2/3 носителей). Среди тех, кто имеет нормальные уровни креатинкиназы, один из четырех (белые квадраты) будет носителем.
    Рис. п.8.7. Родословная, информативная в отношении ПДРФ при мышечной дистрофии Дюшенна. В1 относится к более частому аллелю, а В2-К более редкому аллелю этого локуса. (В2) и (В1) указывают на генотип. Числа под символами относятся к уровням креатинкиназы. Больной Ш,1 получил аллель В1 от матери-носи-тельнищ.1 (П,2), которая получила его от своей матери (1,2). П1,2, которая имеет 50%-ный риск носительства, получила нормальный аллель В2 от матери и нормальный аллель В1 от отца. Следовательно, 1П,2 не унаследовала аллель мьппечной дистрофии, если только в результате кроссинговера мутантный ген не попал в хромосому, несущую аллель В2 (вероятность 15%). [c.238]

    Пример использования всей информации приведен на рис. П.8.7. У женщины ПТ, 2 имеется брат и умерышй дядя, страдавший при жизни мышечной дистрофией Дюшенна. Она хочет знать, является ли она носителем. Показатель креатинкиназы 75 ед./л, тогда как у ее матери и бабушки со стороны матери эти значения равны ПО и 125 ед./л соответственно. Ее риск [c.238]

    Методический подход, получивший название обратная генетика и оказавшийся очень полезным при изучении наследственных заболеваний, в настоящее время взят на вооружение широким кругом исследователей. За последние годы наши представления о мышечной дистрофии Дюшенна, муковисцидозе и ретинобластоме значительно расширились. Если раньше усилия ученых были направлены на выяснение закономерностей насле- [c.204]

    Говоря об идентификация генов, ответственных за возникновение заболеваний, следует отметить большой прогресс в идентификации генов, вовлеченных в их этиологию в случае моногенных наследственных болезней, наследование которых подчиняется менделевским законам. Здесь весьма успешной оказалась стратегия позиционного клонирования. С ее помощью удалось идентифицировать множество генов, включая гены, ответственные за муковисцидоз, рак молочной железы, другие виды наследственной предрасположенности к опухолям, мышечной дистрофии Дюшенна и миотони-ческой дистрофии, ген, ответственный за преждевременное старение (синдром Вернера), гены, ответственные за нейрофиброматоз 1-го и 2-го типов, и другие. [c.9]


Смотреть страницы где упоминается термин Дюшенна мышечная дистрофия: [c.50]    [c.332]    [c.160]    [c.238]    [c.50]    [c.332]    [c.226]    [c.226]    [c.420]    [c.425]    [c.425]    [c.354]    [c.73]   
Генетика человека Т.3 (1990) -- [ c.47 , c.108 ]

Анализ генома (2001) -- [ c.215 ]

Анализ генома Методы (1990) -- [ c.215 ]




ПОИСК







© 2025 chem21.info Реклама на сайте