Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Сдвиг рамки считывания генетический код

Рис. 15.4. Изменение разбивки считываемой последовательности на триплеты в результате мутации со сдвигом рамки . Бактериофаг Т4 способен образовывать лизоцим. Этот фермент кодируется геном фага. Вверху представлен отрезок нормальной нуклеотидной последовательности (фаг дикого типа) и указаны соответствующие аминокислоты, Внизу приведена нуклеотидная последовательность двойного мутанта, полученного из дикого типа в результате двукратной обработки профлавином. Нуклеотид А во втором триплете утрачен, и начиная с этого места триплеты считываются неправильно ( рамка считывания сдвинута). В результате включения О в конце пятого неверного триплета в дальнейшем восстанавливается правильный порядок считывания. Таким образом, нуклеотидные последовательности двойного мутанта и дикого типа различны только на участке от второго до пятого триплета включительно. Если кодируемые этими триплетами аминокислоты не существенны для функции данного белка, то вторая мутация восстанавливает свойства (фенотип) дикого типа (генетическая супрессия). Рис. 15.4. Изменение разбивки считываемой последовательности на триплеты в <a href="/info/1355385">результате мутации</a> со <a href="/info/101523">сдвигом рамки</a> . Бактериофаг Т4 способен образовывать лизоцим. Этот <a href="/info/1394523">фермент кодируется геном</a> фага. Вверху представлен отрезок нормальной <a href="/info/98217">нуклеотидной последовательности</a> (фаг <a href="/info/700379">дикого типа</a>) и указаны <a href="/info/166527">соответствующие аминокислоты</a>, Внизу приведена <a href="/info/1388569">нуклеотидная последовательность двойного</a> мутанта, полученного из <a href="/info/700379">дикого типа</a> в результате двукратной обработки профлавином. Нуклеотид А во втором триплете утрачен, и начиная с <a href="/info/436023">этого места</a> <a href="/info/1868698">триплеты считываются</a> неправильно ( <a href="/info/510489">рамка считывания</a> сдвинута). В <a href="/info/1320773">результате включения</a> О в конце пятого неверного триплета в дальнейшем восстанавливается правильный порядок считывания. <a href="/info/461013">Таким образом</a>, <a href="/info/1388569">нуклеотидные последовательности двойного</a> мутанта и <a href="/info/700379">дикого типа</a> различны только на участке от второго до пятого триплета включительно. Если кодируемые этими <a href="/info/1409270">триплетами аминокислоты</a> не существенны для <a href="/info/1705635">функции данного</a> белка, то вторая <a href="/info/106064">мутация восстанавливает</a> свойства (фенотип) <a href="/info/700379">дикого типа</a> (генетическая супрессия).

    Изучение г//-мутаций предоставило также генетические свидетельства в пользу существования кодонов, терминирующих синтез полипептидной цепи. Комплементационный анализ показал, что цистроны А и В кодируют две различные генетические функции. Это значит, что на границе между этими цистронами должны находиться определенные генетические знаки препинания . Делеция такого пограничного участка приводит к слиянию неделетированных участков Л и В в один общий цистрон. Так, делеция 1589 (рис. 12.2) приводит к возникновению гПА-мутанта, сохраняющего, несмотря на частичную делецию в В-цистроне, его функциональность, т.е. способность кодировать активный В-белок. Участок В-цистрона, исчезающий при делеции 1589, содержит ту самую область, в которой картируются мутации F O и ее производные. Это подтверждает сделанный в предыдущем разделе вывод о том, что данный участок В-белка не существен для проявления нормальной активности. Введение мутации со сдвигом рамки в неактивный Л-участок слитых цистронов, образовавшихся в результате делеции 1589, нарушает и функциональную активность В-участка. Следовательно, слитая мРНК имеет направление трансляции Л -> В считывание этой мРНК приводит к образованию одного слитого полипептида. [c.74]

    Еш,е до того как была окончательно установлена триплетная природа кодонов, Крик и его сотрудники, остроумно использовав мутации со сдвигом рамки, доказали, что генетический код действительно составлен из нуклеотидных триплетов. Рассмотрим, что произойдет при спаривании двух штаммов бактерий, каждый из которых несет мутацию со сдвигом рамки (например, делецию —1). В результате генетической рекомбинации могут образоваться мутанты, содержаш,ие обе мутации со сдвигом рамки. Однако распознать такие рекомбинанты будет трудно, так как (согласно практически любой теории кодирования) они по-прежнему будут продуцировать полностью дефектные белки. Крику и его сотрудникам удалось, однако, ввести в тот же ген третью мутацию со сдвигом рамки того же типа и наблюдать, что рекомбинанты, несуш,ие все три делеции (или вставки), были способны синтезировать, по крайней мере частично, активные белки. Это объясняется просто. Делеции одного или двух нуклеотидов полностью инактивируют ген, тогда как при делеции трех нуклеотидов, расположенных в пределах одного гена и близко друг от друга, ген укорачивается лишь на три нуклеотида. В гене будет содержаться в этом случае лишь небольшая область с измененными кодонами. Кодируемый белок будет нормальным, за исключением небольшого участка, в котором некоторые из аминокислот будут заменены, а одна будет полностью отсутствовать. Мы уже знаем, что в большинстве белков полностью инвариантна лишь сравнительно небольшая доля аминокислот. Таким образом, очень часто ген, в котором модифицирована небольшая область, может синтезировать функционально активные продукты при условии, что не произошло сдвига рамки считывания. [c.252]


    Если мутация обусловлена вставкой или делецией одной нуклеотидной пары в ге е, то при этом могут происходить более глубокие генетические повреждения, чем в случае замены основания. Следствием подобной мутации будет нарушение нормального соответствия между кодонами в ДНК и аминокислотами в кодируемом полипептиде. Нарушения начнутся с той точки, в которой появилась или исчезла пара оснований, поскольку именно в этом месте возникает сдвиг рамки считывания ДНК. В результате полипептидный продукт будет иметь правильную аминокислотную последовательность вплоть до точки мутации, а далее аминокислотная последовательность будет совершенно искажена (рис. 30-8). Мутации со сдвигом рамки часто приводят к появлению внутреннего терминирующего кодона, вызывающего преждевременное прекращение синтеза полипептида и образование укороченного продукта. Подавляющее большинство точковых мута ций со сдвигом рамки приводит к образованию биологически [c.971]

    Спонтанные изменения генетической природы организма — продуцента основаны на процессах рекомбинации генетического материала in vivo (амплификация, конъюгация, трансдукция, трансформация и пр.). Для вьщеления из природных популяций высокопродуктивных штаммов микроорганизмов используют методы селекции, т. е. направленного отбора организмов со скачкообразным изменением геномов. Методы слепого многоступенчатого отбора случайных мутаций чрезвычайно длительны и могут занимать целые годы. Для возникновения мутаций интересующий ген должен удвоиться 10 —10 раз. Более эффективен метод искусственного повреждения генома. Таким методом является индуцированный мутагенез, основанный на использовании мутагенного действия ряда химических соединений (гидроксиламин, нит-розамины, азотистая кислота, бромурацил, 2-аминопурин, алки-лирующие агенты и др.), рентгеновских и ультрафиолетовых лучей. Мутагены вызывают замены и делеции оснований в составе ДНК, а также индуцируют мутации, приводящие к сдвигу рамки считывания информации. [c.33]

    Когда с помощью генетической рекомбинации акридиновые мутации отделяли от их супрессоров, супрессоры (как и сами мутации) проявляли свойства, характерные для мутаций со сдвигом рамки считывания. [c.58]

    После второй мировой войны благодаря появлению биохимических и цитологических методов произошло быстрое возрождение генетики человека. Генетика человека, которой в основном занимались ученые, использующие статистические методы, влилась в основной поток медицинских исследований. Полинг показал, что серповидноклеточная анемия-молекулярная болезнь [1260], и его открытие послужило толчком к развитию подобных исследований. Наличие аномальных гемоглобинов предоставило возможность для детального изучения последствий мутаций. Генетический код был выявлен у столь далеко отстоящих друг от друга организмов, как вирусы и человек. Было обнаружено, что мутации могут приводить к аминокислотным заменам, сдвигать рамку считывания или вызывать обрыв аминокислотной цепи в результате делеции. При помощи методов биохимии и молекулярной генетики удалось определить нуклеотидную последовательность глобинового гена. Было показано, что причины многих врожденных нарушений метаболизма-различные дефекты ферментов, возникающие вследствие мутаций, изменяющих их структуру. Мет-гемоглобинемия, возникающая вследствие недостатка диафоразы, и болезни накопления гликогена относятся к числу первых обнаруженных болезней, вызываемых дефектами ферментов (разд. 4.1). [c.31]

    МУТАЦИЯ, наследуемое изменение генотипа. Различают точечные М. и крупные перестройки ДНК. К точечным относятся замены одиночных пар оснований ДНК (транзи-ции — замены одного пурина на другой и одного пиримидина на другой, трансверсии — замены пурина на пиримидин и наоборот) и выпадения или вставки одиночных нуклеотидных пар ДНК (мутации со сдвигом рамки считывания). Замена пары оснований может приводить к изменению кодона и послед, замене аминокислоты в кодируемом белке (миссенс-мутация) или же к образованию бессмысленного кодона и прекращению трансляции данной матричной РНК (нонсенс-мутация). К крупным перестройкам ДНК относятся делении (выпадения), дупликации (удвоения), инверсии (повороты на 180°), транслокации (перемещения) участков ДНК, а также инсерции (встраивания) новых сегментов ДНК. Иногда к М. относят изменения числа хромосом в клетке (геномная М.). Различают спонтанные М., возникающие с частотой 10 —10 (отношение числа мутировавших нуклеотидных звеньев к общему числу мономерных звеньев ДНК), и индуцированные, частота к-рых может пре-вьипат . 10 М. могут быть индуцированы хим. (дезаминирующие, алкилирующие и др. реагенты), физ. (ионизирующие излучения) и биол. мигрирующие генетические элементы) мутагенными факторами. Частота и специфичность возникновения спонтанных и индуцированных М. находятся под генетич. контролем. [c.356]

    Конечная цель генетического анализа выявить различия на уровне ДНК, т.е. идентифицировать мутантный сайт. Последовательность нуклеотидов в ДНК содержит информацию для последовательности аминокислот в полипептидной цепи. Вот почему, если прямой анализ на уровне ДНК невозможен, определяют различия на уровне аминокислотной последовательности белков, а по ней уже судят о перестройке на уровне ДНК. Впервые это было осуществлено для гемоглобинов (разд. 4.3). Впоследствии такой анализ позволил сделать вывод о перестройках в ДНК, кодирующих другие белки. Оказалось, что у большинства мутантных белков в определенном положении одна аминокислота замещена на другую в результате замены нуклеотида в соответствующем кодоне. Обнаружены и другие перестройки делеции, сдвиг рамки считывания и нонсенс-мутации (разд. 4.3, 5.1). В этом случае генетический вариант [c.230]


    Планирование тестирующих программ. Из предшествующего обсуждения должно быть ясно, что на первый вопрос-действует ли и как действует определенный фактор на генетический материал-мы не можем отвечать абстрактно. В некоторых случаях химический состав соединения помогает нам сформулировать более конкретные гипотезы. Например, можно ожидать, что акридиновое соединение индуцирует главным образом мутации сдвига рамки считывания, а этиленимин и азотистый иприт производят алкилирующие эффекты и индуцируют геномные, хромосомные и генные мутации. Часто вещество разлагается столь быстро, что опасность мутагенного эффекта оказывается очень небольшой. Химический состав соединений может вообще не давать никакого намека на их мутагенные свойства, и тем не менее эти соеди- [c.266]

    Вставки одного, двух или любого, не кратного трем, числа нуклеотидов в ген также приводят к образованию измененной мРНК со сдвигом рамки считывания, что в свою очередь ведет к последствиям, принципиально не отличающимся от тех, что возникают в результате делеций. Это может быть искажение аминокислотной последовательности в протяженной области, вслед за местом вставки образование нонсенс-кодона (в месте вставки или на некотором расстоянии от него) и преждевременная терминация синтеза белка или сквозное счи1ывание при элиминировании нормального стоп-кодона. Вставка, возникающая в гене вслед за делецией (или наоборот), может восстановить правильную рамку считывания (рис. 40.6, пример 4). Трансляция такой мРНК приведет к образованию полипептида с искаженным участком, заключенным между сайтами вставки и делеции. За точкой восстановления рамки считывания аминокислотная последовательность будет нормальной. Можно представить множество комбинаций делеций и вставок, в результате которых образуются белки, содержащие участки с измененной структурой, окруженные участками с исходной аминокислотной последовательностью. Этот феномен был убедительно продемонстрирован на бактериофаге Т4, что внесло значительный вклад в доказательство триплетной природы генетического кода. [c.100]

    Если число нуклеотидов, утраченных при делеции, не кратно трем, то на участке гена, расположенном за делецией, смысл считываемой генетической информации полностью меняется-в результате возникает совершенно новая аминокислотная последовательность (мутации сдвига рамки считывания). В некоторых случаях образующиеся при этом глобиновые полипептиды удается идентифицировать. Оказалось, что мутация гемоглобин Wayne (рис. [c.84]

    По влиянию на экспрессию генов мутации разделяют на две категории мутации типа замен пар оснований и типа сдвига рамки считывания (й-атезЫЛ). Последние представляют собой делеции или вставки нуклеотидов, число которых не кратно трем, что связано с триплетностью генетического кода. Первичную мутацию иногда называют прямой мутацией, а мутацию, восстанавливающую исходную структуру гена, - обратной мутацией, или реверсией. Возврат к исходному фенотипу у мутантного организма вследствие восстановления функции мутантного гена нередко происходит не за счет истинной реверсии, а вследствие мутации в другой части того же самого гена или даже другого неаллельного гена. В этом случае возвратную мутацию называют супрессорной. Молекулярно-генетические механизмы, благодаря которым происходит супрессия мутантного фенотипа, весьма разнообразны. [c.278]

    СТО оказываются миссенс-мутациями (мутациями с изменением смысла), в которых последовательность кодирующего триплета оснований после замены кодирует уже другую аминокислоту. Вследствие вырожденности генетического кода аминокислота, кодируемая мутантным геном, часто оказывается сходной с той, которая кодировалась родительским триплетом, в результате чего формируется фенотип ( leaky ) лищь с частично нарушенной функцией (определяемой обычно белком). Такие штаммы имеют тенденцию спонтанно ревертировать к родительскому типу, проявляя таким образом генетическую нестабильность и частичную физиологическую неполноценность. Значительная часть мутаций с заменой оснований представляет собой нонсенс-мутации (бессмысленные мутации), характеризующиеся тем, что кодирующий какую-либо аминокислоту триплет превращается в триплет, не кодирующий никакой аминокислоты. В этом случае синтез соответствующего белка прерывается на измененном триплете, а образующийся незавершенный фрагмент белковой молекулы, как правило, не способен выполнять предназначенной исходному белку функции. Поэтому нонсенс-мутации фенотипически выражены, а способность ревертировать у них сохраняется. Мутации со сдвигом рамки возникают в случае вставки или делеции одного или нескольких оснований в молекулу ДНК- При этом происходит сдвиг рамки при считывании закодированной информации и как следствие — изменение последовательности аминокислот в белке мутантного штамма. [c.10]

    Б. Замена одного основания — простейший тип мутации более сложные мутации могут приводить к потере или вставке одного или нескольких оснований. Если вставки или потери происходят в нетранскри-бируемых или фланкирующих участках, это может не привести к серьезным генетическим последствиям. Однако если они происходят в участке, кодирующем аминокислоты, последствия обычно легальны, так как последовательность аминокислот в белке будет совершенно другой, поскольку вставка или потеря оснований изменяют рамку считывания кодонов (см. приложение). Чаще всего, изменение рамки считывания кодонов (этот тип мутаций называется сдвиг рамки ) приводит к появлению стоп-кодона, а именно ТАА, TAG или TGA, которые преждевременно останавливают синтез белка (см приложение). [c.57]

    Другой тип мутаций вызывают плоские ароматические молекулы, например акридины. Эти соединения интеркалируют в ДНК, т.е. проскальзывают между соседними парами оснований в двойной спирали ДНК (разд. 25.18). Интеркаляторы, видимо, стабилизируют спаривание оснований со сдвигом в повторяющихся последовательностях, таких, например, как G G G G. В результате они вызывают включения или делеции одной или более пар оснований. Действие таких мутаций заключается в изменении рамки считывания, если только общее число делетированных или включившихся оснований не кратно трем. Именно анализ таких мутантов позволил доказать триплет-ность генетического кода. [c.82]


Смотреть страницы где упоминается термин Сдвиг рамки считывания генетический код: [c.223]    [c.223]    [c.211]    [c.55]   
Генетика человека Т.3 (1990) -- [ c.100 ]




ПОИСК







© 2025 chem21.info Реклама на сайте