Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Аминокислотная последовательность у и далее Аминокислоты

    Метод Эдмана последовательной деградации пептидов и белков основан на реакции фенилизотиоцианата с концевой аминогруппой в щелочной среде, которая приводит сначала к образованию тиомочевинной метки концевой аминокислоты, последняя при действии СРзСООН отщепляется, в конечном счете, в виде замещенного фенилтиогидантоина, после чего полипептидная цепь белка укорачивается на один аминокислотный остаток. Далее этот процесс повторяется вновь [c.94]


    Если мутация обусловлена вставкой или делецией одной нуклеотидной пары в ге е, то при этом могут происходить более глубокие генетические повреждения, чем в случае замены основания. Следствием подобной мутации будет нарушение нормального соответствия между кодонами в ДНК и аминокислотами в кодируемом полипептиде. Нарушения начнутся с той точки, в которой появилась или исчезла пара оснований, поскольку именно в этом месте возникает сдвиг рамки считывания ДНК. В результате полипептидный продукт будет иметь правильную аминокислотную последовательность вплоть до точки мутации, а далее аминокислотная последовательность будет совершенно искажена (рис. 30-8). Мутации со сдвигом рамки часто приводят к появлению внутреннего терминирующего кодона, вызывающего преждевременное прекращение синтеза полипептида и образование укороченного продукта. Подавляющее большинство точковых мута ций со сдвигом рамки приводит к образованию биологически [c.971]

    Эластин - это нерастворимый, похожий на резину белок эластических волокон соединительной ткани. Он способен к обратимому растяжению в длину в несколько раз. Такие виды соединительной ткани, как связки и дуга аорты, особенно богаты эластином. Как и в коллагене, в эластине содержится много пролина и глицина в отличие от коллагена в эластине нет гидроксилизина и мало гидроксипролина. Аминокислотный состав эластина характеризуется выраженным преобладанием неполярных аминокислот. Последовательность аминокислот в эластине имеет определенную периодичность. Так, часто повторяется последовательность Рго-С1у-Уа1-С1у-Уа1. Эластин синтезируется в виде растворимого предшественника, который далее переходит в нера- [c.196]

    Внесение специфических изменений в кодирующие последовательности ДНК, приводящих к определенным изменениям в аминокислотных последовательностях, называется направленным мутагенезом. Идентификация аминокислот, замена которых даст желаемый результат, облегчается, если детально известна пространственная структура белка (ее устанавливают с помощью рентгеноструктурного анализа или других аналитических методов). Однако для большинства белков такие данные отсутствуют, поэтому направленный мутагенез - это в значительной мере эмпирическая процедура, основанная на методе проб и ошибок. Каждый белок, кодируемый мутантным геном, нужно протестировать и убедиться в том, что мутация дала желаемый эффект. [c.159]

    Рассматривая далее роль РНК в синтезе белка, полезно вернуться к описанной выше структуре дрожжевой транспортной РНК. Ее наиболее интересной особенностью является наличие неспаренных оснований в месте перегиба полинуклеотидной цепи. Для того чтобы было возможно образование спиральной структуры, в этом месте должны разместиться минимум три нуклеотида, у которых основания не связаны водородными связями. Эти три (или большее число) нуклеотида могут, весьма вероятно, играть решающую роль при включении той или иной конкретной аминокислоты в аминокислотную последовательность синтезируемого белка. Можно, например, представить себе, что код аминокислотной последовательности передается от информационной РНК к транспортной РНК путем образования водородных связей между указанными неспаренными основаниями и соответствующими основаниями информационной РНК. Если остальная часть молекулы транспортной РНК способна соединиться с определенной аминокислотой, предварительно активированной ферментом, то в результате данная аминокислота будет перенесена к определенному месту РНК-матрицы. [c.144]


    В этой работе использовались аминокислотные последовательности 7 белков 17 видов млекопитающих. Вначале аминокислотные последовательности всех белков были написаны подряд друг за другом так, как будто они представляют единую последовательность аминокислот. Затем было определено минимальное число нуклеотидных замен, необходимых для того, чтобы объяснить происхождение этих белков от общего предка. Соответствующие значения числа замен были определены для каждой ветви филогенетического древа. Далее использовались два приема. Прежде всего оценивалось общее число замен в единицу времени на разных этапах эволюции. При этом подвергалась проверке гипотеза, согласно которой общая скорость изменений постоянна на протяжении всего времени эволюции. Вероятность того, что наблюдавшаяся изменчивость обусловлена случайными причинами, очень мала 4-10 . Это с высокой достоверностью означает, что скорость эволюции белков не была постоянной, как этого можно бьшо бы ожидать, исходя из предположения о пуассоновском характере процесса. [c.236]

    П. Льюис и Г. Шерага впервые предложили рассчитывать профили вероятности спирального содержания развернутой белковой цепи с помощью параметров 8 и а, найденных экспериментально из кривых плавления переходов спираль-клубок синтетических полипептидов [74]. Они полагали, что поиск корреляции между рассчитанными таким образом профилями вероятности содержания а-спиралей для денатурированных белков и экспериментально наблюдаемыми а-спиральными областями в нативной структуре окажется более перспективным по сравнению с попытками установить связь с помощью статистического анализа между аминокислотной последовательностью и вторичными структурами, а также между последними и третичной структурой. Предполагается следующая схема свертывания белковой цепи в глобулу. Первоначально на некоторых участках полностью развернутой белковой цепи возникают а-спирали. Регулярное свертывание цепи происходит не за счет кооперативных взаимодействий остатков, а в соответствии с потенцией отдельных аминокислот. Далее, флуктуация цепи в разделяющих спирали областях, специфика которых, согласно [c.251]

    Допустим, что упорядоченную сборку аминокислот осуществляет другой, специфический фермент, который и обеспечивает совершенно определенное чередование аминокислотных остатков в данной полипептидной цепи. Тогда для каждого отдельного белка сданной первичной структурой должен существовать свой специфический фермент, который знает , как собирать полипептидную цепь этого конкретного вида белка. Но если этот фермент сам является белком со специфической последовательностью аминокислот, то становится очевидным, что вместо ответа на интересующий нас вопрос мы приходим просто к парадоксу. Очевидно, что постулирование указанного фермента требует постулирования еще одного аналогичного фермента, который управляет образованием первого. Для образования этого второго фермента в свою очередь нужен третий такой фермент и так далее до бесконечности. [c.112]

    Вскоре была определена нуклеотидная последовательность вставки клона Hif-2h и на его основании аминокислотная последовательность, кодируемая внутри открытой рамки считывания. Эта последовательность содержала 189 аминокислот. К тому моменту стала известна первичная структура N-концевого участка одного из лейкоцитарных интерферонов человека, выявленная путем анализа высокоочищенного белка. Из сравнения аминокислотных последовательностей стало ясно, что первая аминокислота зрелого интерферона соответствует 24-му кодону клонированной последовательности, т. е. интерферон Hif-2h (названный интерфероном al) синтезируется в виде предшественника и при созревании и секреции из клеток отщепляет сигнальную последовательность длиной в 23 аминокислоты. Сам зрелый интерферон al содержит 166 аминокислотных остатков. Далее оказалось, что существует различие в пяти аминокислотных остатках из 20 между N-концевой последовательностью интерферона al и последовательностью лейкоцитарного интерферона, которую определили путем анализа из фракций высокоочищенного белка. Вскоре Вейсман с сотрудниками клонировали еще один ген лейкоцитарного интерферона (названный интерфероном о2, или оА) и определили его нуклеотидную последовательность. Соответствующая ей аминокислотная последовательность содержала 165 аминокислот и была сходна, но не идентична последовательности интерферона оА. Из этих результатов стало ясно, что имеется по крайней мере три разных лейкоцитарных а-интерферопа. [c.192]

    В процессе образования грамицидина можно выделить связанные с ферментами пептиды D-Phe—Pro, D-Phe—Pro—Val, D-Phe—Pro—Val—Orn и D-Phe—Pro—Val—Orn—Leu. При образовании тироцидина можно выделить подобные серии начиная от пептида D-Phe—Pro вплоть до декапептида, так что, очевидно, цепи строятся начиная с D-Phe и далее путем присоединения каждый раз по одному аминокислотному остатку в заданной последовательности. Если в смеси аминокислот отсутствует Pro или Phe, пептиды не образуются в отсутствие Asn образуются не более чем тетрапептиды, а без Orn — не более чем октапептиды. [c.75]


    Итак, все результаты, вместе взятые, позволяют сделать предположение, согласно которому уникальные пептидные последовательности, имеющие биологическое значение, могли возникнуть в добиологический период без участия нуклеиновых кислот или конденсирующих агентов, специфичных для каждого из аминокислотных остатков. Дело здесь отчасти в том, что взаимодействие аминокислот зависит от размеров их боковых цепей. Таким образом, вполне возможно, что пептиды с определенной последовательностью, возникшие в добиологический период, могли служить той матрицей, с которой информация передавалась далее на полинуклеотиды, т. е. направление передачи информации было обратным современному. Однако данных, которые подтверждали бы это предположение, в настоящее время не имеется 1781. [c.247]

    Частичные последовательности, произведенные от целого пептида с известным триниальным назнанием, записывают следующим образом после тривиального названия пептида приводят цифры, показывающие положения первой и последней аминокислот в данной частичной последовательности, далее следует греческое числительное для указания числа аминокислотных остатков, из которых построена частичная последовательность. [c.92]

    Используя технику клонирования ДНК [599] и анализа нуклеотидных последовательностей [600], Наканнши и сотр. foOl] установили нуклеотидную последовательность мРНК-предшественника. Нумерация аминокислотной последовательности положительная справа от N-концевой аминокислоты АКТГ, в левую сторону отсчет идет со знаком минус. Белок-предшественник содержит 8 пар основных аминокислот и одну двойную пару -Lys-Lys-Arg-Arg. В этих местах происходит ферментативное расщепление белка с образованием различных пептидов. /3-Липотропин образует С-концевую область и, вероятно, отщепляется непосредственно от предшественника. Общая схема ферментативного расщепления и вид фрагментации к настоящему времени еще не установлены. В отличие от известных последовательностей /3-липотропинов свиньи и овцы /3-липотропин теленка содержит между 35 и 36 аминокислотными остатками два дополнительных (-Ala-Glu-) этим объясняются различные длины цепей липотропинов (см. схему). Анализ на ЭВМ аминокислотной последовательности отрицательной части предшественника дал интересный результат между позициями —55 и —44 найдена аминокислотная последовательность -Tyr-Val-Met-Gly-His-Phe-Arg-Trp-Asn-Arg-Phe-Gly-, имеющая большое сходство с а- н /3-МСГ. Так как в области аминокислотной последовательности предшественника от —111 до —105 присутствует еще один участок, имеющий структурное сходство с МСГ-пептидами, предполагается существование серии дупликаций гена, аналогично имеющей место в случае иммуноглобулинов. О [c.242]

    Расщепление полипептидной цепи на фрагменты проводят обычно при помощи протеолитических ферментов, таких, как трипсин, химотрипсин или пепсин. Эти ферменты действуют на различные участки полипептидной цепи, так как имеют повышенное сродство к различным аминокислотным остаткам. Необходимо учитывать также соседние аминокислотные остатки, т. е. пространственное окружение атакуемой пептидной связи. Оказалось, что трипсин гидролизует только те пептидные связи, в образовании которых участвует карбоксильная группа лизина или аргинина, а химотрипсин гидролизует связи по фенилаланину, триптофану и тирозину Обычно протеолитические ферменты, гидролизующие полипептидные цепи, предварительно иммобилизуют на нерастворимых матрицах для более легкого отделения их от продуктов гидролиза. Далее определяют аминокислотные последовательности каждого полипептидного фрагмента. Для этого чаще всего используют метод Эдмана, заключающийся в анализе полипептида только с Ж-конца. Концевая аминокислота при взаимодействии с фенилизотиоцианатом в щелочной среде образует стойкое соединение, которое можно отщепить от полипептида без его деградации. Фенилтиогидантоиновое (ФТГ) производное аминокислоты идентифицируется хроматографическим методом. После идентификации концевого Ж-амино-кислотного остатка метка вводится в следующий аминокислотный остаток, [c.41]

    Каждый из этих ферментов атакует вполне определенные пептидные связи. Трипсин катализирует гидролиз пептидных связей, карбонильная группа которых принадлежит одной из основных аминокислот, обычно аргинину или лизину. Пепсин и химотрипсин предпочтительно катализируют гидролиз тех пептидных связей, в образовании которых участвуют ароматические аминокислоты, в частности триптофан, тирозин и фенилаланин. Среди протеолитических ферментов наиболее высокой специфичностью обладает трипсин поэтому именно он наиболее подходит для такого рода анализа. Ясно, однако, что при помощи только одного, пусть даже абсолютно специфичного, фермента невозможно определить полную последовательность аминокислот в полипептиде. Если, например, триптическое расщепление полипептида дало пять фрагментов (пептидов), в сумме соответствующих всей цепи, и если даже для каждого из них удалось установить аминокислотную последовательность, то это еще не все требуется узнать, в каком порядке эти пептиды располагались в нативном полипептиде. Чтобы узнать это, необходимо получить другие пептиды, которые перекрывались бы с первыми. Главное преимущество ферментативного гидролиза — специфичность реакции расщепления в отношении природы расщепляемых пептидных связей накладывает в то же время строгое ограничение на применимость этого метода. В идеале желательно было бы, например, иметь возможность расщеплять иногда те пептидные связи, которые в норме трипсином не атакуются, или, наоборот, предохранять от расщепления связи заведомо чувствительные. Недавно были предложены некоторые модификации методики, которые позволяют в какой-то мере решить эту задачу. Так, например, реакция е-аминогруппы лизина с этилтрифтортиоацетатом в слабо щелочном растворе дает блокированный по аминогруппе остаток, пептидная связь которого не атакуется трипсином [c.90]

    Если один из сравниваемых белков обладает какими-то отличиями в аминокислотной последовательности определенного участка первичной цепи, то пептидные фрагменты этого участка будут передвигаться по электрохроматографическому полю с иными скоростями (а часто и в ином направлении) по сравнению с фрагментами такого же участка другого белка. В результате первые пептиды займут особое положение на пептидных картах, тогда как фрагменты цз идентичных участков полипептидных цепей займут аналогичные места. Отличия в последовательности, таким образом, будут обнаружены в пятнах, имеющихся на одной электрохроматограмме и не появляющихся на другой. Элюция и количественный аминокислотный анализ лишних пептидных пятен позволяет далее установить наличие специфических для данного белка аминокислот, характеризующих эти фрагменты. В частности, методом пептидных карт для триптического гидролизата удалось выявить особенности структуры различных гемоглобинов. Гемоглобин 5 отличается от нормального гемоглобина А по электрофоретической подвижности и частично замещает последний у больных серповидно-клеточной анемией. Исследования методом пептидных карт позволили локализовать различие в первичной структуре между гемоглобинами А и 5 в одной точке полипептидной цепи  [c.82]

    Цитохром с из сердечной мышцы лошади был первым цитохромом, для которого установили полную аминокислотную последовательность. Гидролиз цитохрома с химотрипсином дал тринадцать больших пептидов, которые были разделены хроматографией на ионообменных смолах и очищены далее при помощи электрофореза и хроматографии на бумаге. Аминокислотная последовательность пептидов была установлена при помощи химических и ферментативных методов. Химические методы включали динитрофенилирование по Сэнджеру и деградацию по Эд-ману для идентификации N-концевых аминокислот, ферментативные — гидролиз лейцинаминопептидазой для определения N-концевых и карбоксипептидазой А для определения С-концевых аминокислот оба фермента использовались также для определения коротких аминокислотных последовательностей. [c.160]

    Особенности строения белков, содержащих гомеодомены. В верхней части рисунка представлены основные структурные злементы таких белков. Многие из них имеют характерную N-концевую последовательность, содержащую метионин (М), серии (5), лейцин (Ь), тирозин (V), какую-нибудь одну из аминокислот ( ) и аспарагин (Н). Далее находится участок, длина и аминокислотная последовательность которого варьируют. а за ним короткий инвариантный участок из пяти аминокислот изолейцина (I). тирозина (У), пролина (Р), триптофана ( Л/) и метионина (М). Гомеодомен [c.128]

    Если искать сходство в аминокислотной последовательности ГАФД различного происхождения (рис. 10), то наиболее яркой гомологией, которая привлекает внимание, является почти идентичное положение ароматических аминокислот в полипептидной цепи. ГАФД как свиньи, таки рака содержит три триптофана на одну субъединицу и все они расположены в тех же самых положениях [3, 4]. Далее, все девять остатков тирозина и тринадцать из четырнадцати остатков фенилаланина, так же как и одиннадцать из двенадцати остатков пролина, можно найти в тех же самых положениях аминокислотной последовательности. Однако положение остатков гистидина радикально изменилось. Все [c.73]

    Принимая во внимание это обстоятельство, в настоящее время ГРЧ синтезируют методами генетической инженерии в специально сконструированных клетках бактерий. Будучи синтезированным в клетках Е. соИ, ГРЧ содержит дополнительный остаток метионина на НгН-конце молекулы. Биосинтез ГРЧ из 191 аминокислотного остатка бьш осуществлен в 1979 г. Д. Гедделем с сотрудниками. Сначала клонировали двунитевую кДНК далее путем расщепления получали последовательность, кодирующую аминокислотный порядок гормона, за исключением первых 23 аминокислот, — с фен (—NH2) до лей (23), и синтетический полинуклеотид, соответствующий аминокислотам от первой до двадцать третьей со стартовым ATG-кодоном в начале. Затем два фрагмента объединяли и подстраивали к паре 1ас-промоторов и участку связывания рибосом. Конечный выход гормона составил 2,4 мкг на 1 мл культуры, что составляет 100 000 молекул гормона на клетку. Полученный гормон на конце полипептидной цепи содержал дополнительный остаток метионина и обладал значительной био- [c.138]

    Разнообразие методов синтеза пептидов дало возможность получать пептиды самого различного состава и с любой последовательностью аминокислот. Однако, применение всех этих методов синтеза тре-.бует освоения большого числа разных реакций. Неудивительно поэтому, что исследователи стремятся найти такой синтез, который позволил бы получать пептиды одним общим путем, подобно тому, как большинство аминокислот можно получать малоновым синтезом. Недавно было показано, что универсальным, по-видимому, является кар-бодиимидный метод. Он позволяет нанизывать аминокислотные остатки с карбоксильного конца пептидов или соединять между собою пептиды различной длины и состава без предварительной активации карбоксильной группы. [c.496]

    Следующей задачей при определении строения пептидов является установление характера связи и последовательности аминокислотных остатков в молекуле пептида или белка. Эта задача, трудно выполнимая в настоящее время для белков с большим молекулярным весом, облегчается тем, что в природе встречается значительное число относительно низкомолекулярных соединений, представляющих собою пептиды. Виланд предлагает различать три группы природных пептидов олигопептиды, состоящие из 2—10 аминокис/ют, полипептиды, состоящие из 10—100 аминокислот, и макропептиды, к которым относятся собственно белки. Изучение природных пептидов представляет собой важный этап в подходе к изучению строения белка. Исследование обычно начинают с определения числа цепей, входящих в состав объекта изучения. Для этого пользуются одним из ранее приведенных методов, например диннтрофенилированием, действием азотистой кислогы или аминопептидазы для определения Н-концевой аминокислоты и восстановлением, гидразинолизом или действием карбоксипептидазы для определения С-концевого остатка (см. стр. 510 и далее). [c.514]

    Биосинтез вазопрессина идет через стадию образования белка-предшественника, состоящего из 166 аминокислотных остатков [620а]. В предшественнике после N-концевой сигнальной последовательности, состоящей из 19 аминокислотных остатков, следует последовательность [8-аргинин]вазопрессина. Затем следует остаток глицина, который при ферментативном отщеплении дает С-концевую амидную группу вазопрессина. Далее после пары основных аминокислот следует последовательность нейрофизина II, состоящего из 95 аминокислотных остатков, и затем после следующего остатка аргинина — 39-членный гликополипептид. [c.248]

    Согласно современным представлениям, биосинтез инсулина осуществляется в 3-клетках панкреатических островков из своего предшественника проинсулина, впервые выделенного Д. Стайнером в 1966 г. В настоящее время не только выяснена первичная структура проинсулина, но и осуществлен его химический сгштез (см. рис. 1.14). Проинсулин представлен одной полипептидной цепью, содержащей 84 аминокислотных остатка он лишен биологической, т.е. гормональной, активности. Местом синтеза проинсулина считается фракция микросом 3-клеток панкреатических островков превращение неактивного проинсулина в активный инсулин (наиболее существенная часть синтеза) происходит при перемещен проинсулина от рибосом к секреторным гранулам путем частичного протеолиза (отщепление с С-конца полипептидной цепи пептида, содержащего 33 аминокислотных остатка и получившего наименование соединяющего пептида, или С-пепти-да). Длина и первичная структура С-пептида подвержена большим изменениям у разных видов животных, чем последовательность цепей А и В инсулина. Установлено, что исходным предшественником инсулина является препроинсулин, содержащий, помимо проинсулина, его так называемую лидерную, или сигнальную, последовательность на N-конце, состоящую из 23 остатков аминокислот при образовании молекулы проинсулина этот сигнальный пептид отщепляется специальной пептидазой. Далее молекула проинсулина также подвергается частичному протеолизу, и под действием трипсиноподобной протеиназы отщепляются по две основные аминокислоты с N- и С-конца пептида С—соответственно дипептиды Apr—Apr и Лиз— —Apr (см. рис. 1.14). Однако природа ферментов и тонкие механизмы этого важного биологического процесса—образование активной молекулы инсулина окончательно не выяснены. [c.268]

    Далее, чтобы пол> чить трипептид СЕЛ, необходимо удалить защиту Z с полученного производного и осуществить ацилирование продукта К-защи-щенным производным аминокислоты С (ZNH HR OX). Повторение такой последовательности операций (удаление защиты с Ы-конца и конденсация с К-защищенным производным следующей аминокислоты) ведет к последовательному формированию тетра-, пентапептида и, в конечном счете, л-звенной полипептидной цепи. Две несложные стадии на каждый шаг роста цепи представляются не слишком высокой ценой, так что кажется, что при доступньгх исходных соединениях построение сколь угодно длинной полипептидной молекулы с заданной последовательностью аминокислотных остатков является всего лишь вопросом достаточного терпения синтетиков. Однако (разумеется, есть однако ) в нашем схематическом изложении из двухстадийного цикла выпала одна техническая, но важная операция — выделение промежуточных олигопептидов из реакционных смесей. Что можно сказать об этой, на первый взгляд не принципиальной (и, во всяком случае, не стратегической) операции  [c.299]

    РИБОНУКЛЕАЗЫ (РНК-азы) — ферменты, катализирующие гидролитич. расщепление рибонуклеиновых к-т на олиго- и мононуклеотиды. Р. широко распространены в природе и присутствуют во всех исследованных тканях. Наиболее изучена панкреатическая Р., секретируемая поджелудочной железой [систематич. название полирибонуклеотид — 2-олиго-нуклеотидо-трансфераза (циклизующая) шифр 2.7.7.16 — см. Номенклатура и классификация ферментов]. Р., выделенная в кристаллич. виде из поджелудочной железы быка экстракцией разведенной серной к-той с последующим фракционированием (NH4)2S04 — белок основного характера (р/ 7,8) с мол. в. 13 ООО. Установлена природа и последовательность аминокислотных остатков, входящих в состав Р., и выяснены существенные детали ее пространственной структуры, что дало возможность воссоздать трехмерную модель этого белка. Молекула панкреатич. Р. представляет собой одинарную полипептидиую цепь, состоящую из 124 аминокислотных остатков N-концевой аминокислотой в молекуле Р. является лизин, С-концевой — валин. [c.337]

    Первый успех в области синтеза белка получил дальнейшее развитие. Найдены методы автоматизации процессов как расщепления полипептидов при выяснении последовательности аминокислотных звеньев, так и процессов синтеза полипептидов из аминокислот Меррифилд, 1959—1965). Последнее, в частности, дало возмбжность получать синтетический инсулин с выходом, во много раз превышающим первоначальный и в гораздо более короткое время. А в 1969 г. с применением автоматического устройства был синтезирован еще один белок — фермент рибонуклеаза ( см.), цепь которого содержит 124 аминокислотных звена. [c.335]

    Первое свидетельство в пользу этого предположения он представил уже в 1902 г. Докладывая немецкому обществу естествоиспытателей результаты проделанных совместно с П. Бергелем опытов, он сообщил, что среди продуктов обработки фиброина шелка дымящейся соляной кислотой, трипсином и баритовой водой был обнаружен глицил-аланин [185]. Несколько позднее, в 1906 г., это, первоначально оспариваемое многими учеными открытие, было вновь подтверждено. Тогда среди продуктов гидролиза фиброина шелка, кроме глицил-аланина, был открыт глицил-L-тиpoзин [181]. Из гидролизата эластина был выделен пептид гликоколла и лейцина. Тогда же Фишер и Абдергальден разработали первый метод, позволявший определять аминокислотные остатки, имеющие в своем составе свободную аминогруппу, т. е. N-концевые аминокислоты, по современной терминологии. Значение этого открытия трудно переоценить. Уже в 1907 г. Фишер дал принципиальное решение вопроса о последовательности аминокислотных остатков в полипептидной цепи. Для того чтобы определить положение аминокислоты в дипептиде, он предложил блокировать аминоконец пептида -нафталинсульфо-нильной группой (которая не отщеплялась при гидролизе пеп- [c.87]

    Эластин — это нерастворимый, похожий на резину белок эластических волокон соединительной ткани. Он способен к обратимому растяжению в длину в несколько раз. Особенно богаты эластином связки и дуга аорты. Как и в коллагене, в эластине содержится много пролина и глицина, но нет гидроксилизина и мало гидроксипролина. В аминокислотном составе преобладают неполярные аминокислоты, последовательность которых в эластине имеет определенную периодичность. Так, часто повторяется последовательность про-гли-вал-гли-вал. Эластин синтезируется в виде растворимого предшественника, который далее переходит в нерастворимую форму в результате образования различного рода поперечных сшивок. Одна из них характерна только для эластина. Это десмозин, образованный из боковых цепей четырех остатков лизина. Поперечные связи в эластине обеспечивают способность эластиновых волокон после растяжения восстанавливать исходную форму и размер. Эластин синтезируется как растворимый мономер (ММ 70 ООО Да) — тропоэластин. После секреции действует лизилоксидаза, благодаря которой образуется структура десмозина. В отличие от коллагена синтезируется только один генетический тип эластина. [c.465]

    В гл. V и VI мы рассматривали факты, свидетельствующие о том, что специфические свойства и функции любого белка определяются не только относительным числом и последовательностью аминокислотных остатков, но также трехмерной структурой белка в целом. Кроме того, в настоящее время известно, что сама третичная структура есть функция первичной структуры, т. е. последовательности аминокислот, и упаковка белковых цепей не определяется непосредственно генетическими факторами. Далее, даже если первичная ассоциация нуклеотидов была небеспорядочной, все же, но-видимому, нет оснований считать, что полипептиды, синтезировавшиеся под контролем абиогенных полинуклеотидов, непременно должны были обладать биологически значимыми функциями. С другой стороны, ясно, что как окружающая среда, так и сами взаимодействующие элементы в силу присущих им свойств могут накладывать ограничения на процесс синтеза полипептидов (за счет взаимодействий между объединяющимися мономерами и за счет пространственных взаимодействий со средой). Если предполагаемая модель биогенеза, базирующаяся иа белках, верна, то у нас имеется готовое объяснение для механизма появления полинуклеотидов, содержащих информацию, которая имеет отношение только к биологически выгодным полипептидам. В противном случае, вероятнее всего, появлялись бы многочисленные бессмысленные полипептиды и перед нами встала бы проблема малоэффективной системы проб и ошибок. Итак, образовавшиеся прн добиологическом синтезе полипептидов последовательности могли быть результатом прямого взаимодействия мономеров и взаимодействия между окружающей средой и полимерсинтезирующей системой. Если была необходимость в наличии нуклеиновых кислот, то из этого непосредственным образом не следует, что кодируемая ими последовательность амино- [c.327]


Смотреть страницы где упоминается термин Аминокислотная последовательность у и далее Аминокислоты: [c.54]    [c.55]    [c.375]    [c.375]    [c.334]    [c.283]    [c.287]    [c.8]    [c.365]    [c.52]    [c.23]    [c.170]    [c.45]    [c.240]    [c.248]    [c.299]    [c.187]    [c.216]    [c.134]   
Органическая химия (1979) -- [ c.505 ]




ПОИСК





Смотрите так же термины и статьи:

Аминокислотные последовательности



© 2025 chem21.info Реклама на сайте