Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Гетерозиготность и нейтральные мутации

    Второе различие между двумя гипотезами заключается в форме естественного отбора, которую подразумевает каждая из них. Классическая гипотеза с ее картиной по существу полной гомозиготности предполагает, что основная роль естественного отбора заключается в удалении из популяции вредных мутаций и что наиболее приспособленными генотипами являются гомозиготы по аллелям дикого типа во всех локусах. Это не исключает возможности появления случайных благоприятных мутаций, но такие мутации быстро закрепляются в популяции как новый дикий тип. Более того, допускается существование мутаций, не имеющих селективного значения, но преобладающая в популяции гомозиготность требует, чтобы частота возникновения нейтральных мутаций за поколение была на несколько порядков меньще частоты возникновения вредных мутаций. Точнее, средняя гетерозиготность Н на локус для нейтральных генов в популяции размером N при частоте возникновения нейтральных мутаций [X составит [c.37]


    Предположение о том, что большая часть (если не вся) молекулярной изменчивости в природных популяциях селективно нейтральна, к сожалению, привело к широкому употреблению терминов нейтральная мутационная теория и нейтралисты для описания теории и ее защитников (см. почти любую дискуссию по проблеме генетической гетерозиготности начиная с 1968 г.). Но эти термины лишь подчеркивают совсем не то, что надо, и затемняют как логику позиции, так и историческую связь этой теории с позицией классической гипотезы. Никто не настаивает на том, что почти все мутации нейтральны или что эволюция протекает без естественного отбора, главным образом путем случайного закрепления нейтральных мутаций. Оба эти утверждения явно неверны и совершенно чужды духу предлагаемых объяснений. Напротив, мы настаиваем, что многие мутации испытывают действие естественного отбора, но почти все эти мутации вредны и элиминируются из популяции. Второй распространенный класс представлен группой нейтральных мутаций, и именно по этим мутациям будет обнаружено расщепление, если использовать тонкие физико-химические методы. Кроме того, рассматриваемая теория допускает существование редких благоприятных мутаций, которые закрепляются естественным отбором, поскольку адаптивная эволюция все же происходит. Но предполагается, что это событие случается редко. Наконец, эта теория допускает также возникновение время от времени гетерозисных мутаций, но они составляют незначительную часть всех локусов генома. [c.202]

    Во-первых, наблюдаемую долю гетерозиготности можно полностью объяснить аллельной изменчивостью, которая совершенно не влияет на приспособленность. Каждый локус способен мутировать и давать огромное число форм, около на цистрон обычной длины. Конечно, очень большое, но не известное нам число замещений, вероятно, приводит к таким изменениям фермента, в результате которых активность его снижается или теряется вовсе эти мутации будут элиминироваться отбором. Однако многие замещения могут оказаться нейтральными, и большая их часть будет утрачена в течение нескольких поколений после их появления. Некоторые из этих мутаций, хотя они в конце концов и элиминируются, могут временно достигнуть промежуточных генных частот благодаря случайному дрейфу. Еще некоторые, примерно гN новых нейтральных мутаций, в конечном счете закрепляются в популяции, и часть из них может встречаться с промежуточной или высокой частотой. В любой момент большинство локусов будет представлено только одним аллелем, но все уменьшающиеся доли локусов будут представлены 2, 3, 4,. .., п аллелями с варьирующими частотами. После того как процесс продолжался в течение некоторого времени, достигается устойчивое состояние своего рода динамического равновесия между введением новых мутаций, случайным увеличением числа этих мутаций с помощью дрейфа и случайной потерей изменчивости. Мы ожидаем, что чем выше частота возникновения мутаций и чем больше величина популяции, тем больше нейтральных изменений будет накапливаться, не теряясь в дальнейшем. Фактически в устойчивом состоянии гетерозиготность Н будет [c.212]


    PJ — величина популяции, а [х — частота возникновения нейтральных мутаций на локус. Допустим, например, что yV = 3-10 и ji = 10 тогда Н будет равно 11%—величина, достаточно близкая к той, которую мы фактически наблюдаем. На самом деле величина наблюдаемой гетерозиготности не имеет значения ее можно объяснить, если выбрать подходящие значения N и j.i. Форма уравнения (10) является как силой, так и слабостью нейтральной гипотезы. Уравнение содержит два параметра. Один из них, N, очень большой, но его величина неизвестна, а второй, [х, очень мал и также с неизвестным значением. Оба они входят в уравнение в виде произведения N i. В таком случае любое значение Л а будет приемлемым , и поэтому любая наблюдаемая гетерозиготность совместима с классической гипотезой. Важно отметить, что в данном случае соответствие между наблюдениями и теорией выдвигается не в качестве доказательства неоклассической гипотезы, а лишь для того, чтобы показать, что наблюдаемые значения гетерозиготности не противоречат ей просто потому, что ни один уровень гетерозиготности не мог бы ей противоречить. [c.213]

Рис. 18. Гетерозиготность Я, предсказанная на основании гипотезы нейтральных мутаций, как функция произведения величины популяции N и частоты возникновения мутаций ц. Рис. 18. Гетерозиготность Я, предсказанная на основании <a href="/info/1394551">гипотезы нейтральных мутаций</a>, как <a href="/info/250237">функция произведения</a> <a href="/info/1352867">величины популяции</a> N и <a href="/info/1394661">частоты возникновения</a> мутаций ц.
    Что касается гетерозиготности, возникающей за счет нейтральных мутаций, то параметры, критические для влияния миграции на случайную дифференциацию, появляются только в виде их произведения Ыт. Но поскольку т (интенсивность миграции) измеряется числом мигрирующих особей на единицу популяции , Ыт представляет собой абсолютное число особей. Из уравнения (11) мы можем вычислить, что если популяции обмениваются десятью мигрирующими особями в каждом поколении, то независимо от величины популяции среднее значение й равно 0,15. При 100 мигрирующих особях, независимо от величины популяции Мт—100), с1=0,05. Таким образом, небольшого абсолютного числа мигрантов было бы достаточно для объяснения любой степени сходства, наблюдаемой между популяциями. [c.218]

    В предыдущих разделах я старался подчеркнуть, что между гипотезами о количестве генотипической изменчивости в природных популяциях и гипотезами о путях действия естественного отбора существует тесная связь. Ввиду тесной связи между действием естественного отбора и количеством аллельной изменчивости как классическая, так и балансовая гипотезы — это гипотезы и об изменчивости, и об отборе, о двух аспектах одного вопроса. Если действие отбора направлено целиком на очищение генома, если для локуса существует некое состояние дикого типа и любая мутация вредна в гомозиготном состоянии и почти безвредна или даже нейтральна в гетерозиготном состоянии, то генотипическая изменчивость должна встречаться редко в любом локусе. Вся существующая генотипическая изменчивость будет при этом состоять из недавно возникших вредных мутаций, которые еще не успели элиминироваться. Даже при самых благоприятных условиях для изменчивости (полной рецессивности мутантных генов) гетерозиготность в локусе составит всего лишь [c.79]

    Гены, которые в течение длительного времени не подвергаются отбору, в конечном счете эволюционируют независимо друг от друга и от селектируемых локусов при этом не имеет значения, прочно они сцеплены или слабо. Однако длительное время может оказаться на самом деле слишком длительным, и вычислять равновесия для нейтральных генов в этом случае, возможно, не имеет смысла. В конечной популяции с определенным распределением по числу потомков возникающие мутации будут теряться или закрепляться в том или ином поколении. Вероятность потери или закрепления новой мутации и необходимое для этих процессов время зависят от динамики окружающих ее генов. Распределения гетерозиготности и частот аллелей в стационарном состоянии зависят в свою очередь от вероятности закрепления и потери мутаций, а также от скоростей этих процессов. [c.316]

    Если мутация нейтральна в гетерозиготной, но полезна в гомозиготной комбинации, то вероятность сохраниться для неё намного меньше рассчитанной, поскольку отбор не может благоприятствовать ей до тех пор, пока две такие (рецессивные) мутации не окажутся в одной и той же зиготе. Это будет только в том случае, когда частота нового гена станет довольно большой. Однако, прежде чем это произойдет, новый ген скорее всего случайным образом элиминируется. Поэтому начальное увеличение частоты рецессивного гена зависит главным образом от скорости мутирования и от случая. Когда частота этого гена станет настолько большой, что в популяции появятся особи с рецессивным признаком, отбор начнет увеличивать частоту гена. [c.460]

    Для популяции даже умеренного размера, например в 1000 особей, частота возникновения мутаций при этом составит 2,5-10 , тогда как частота летальных мутаций у дрозофилы равна 10- (Добржанский и Райт, 1941 Айвс, 1945), а видимых мутаций, например у кукурузы, — от 5-10- до 2-10 ° (Стадлер, 1942). Среди видов, имеющих радикально различную популяционную структуру, неизбежны значительные различия по гетерозиготности, если только частота возникновения нейтральных мутаций не ниже 10 . Таким образом, в общем и целом классическая гипотеза требует признать главенствующую роль того, что можно назвать очищающим отбором . [c.37]


    Неоклассическая гипотеза использует в своей аргументации разнообразные теоретические данные по генетическому грузу при замещении генов (Холдейн, 1957) и при сбалансированном полиморфизме (Кроу, 1958), величине гетерозиготности, которая поддерживается благодаря мутационному процессу в конечной популяции (Кимура и Кроу, 1964), вероятности закрепления благоприятных (Холдейн, 1927) и нейтральных мутаций (Кимура, 1962), равновесной частоте, при которой новые мутации закрепляются в популяциях (Кимура, 1968), внося в эти теоретические результаты современные оценки средней частоты возникновения мутаций, средней величины генома, гетерозиготности на локус и величины популяции наряду с расчетами частоты замещения аминокислот у ряда хорошо изученных полипептидов в процессе эволюции (Кинг и Джукс, 1969). Кимура и Ота собрали эти разнообразные данные в ряде публикаций, две из которых (1971Ь, с), а также их превосходная книга (1971а) содержат все вычисления и доказательства. Однако полного и последовательного изложения всей аргументации нигде опубликовано не было. [c.204]

    Больщинство, если не все новые мутации, понижают приспособленность особи, которая гомозиготна по этой мутации. Многие мутантные гены в гомозиготном состоянии обладают летальным действием, т. е. особи, несущие двойную дозу мутантного гена,, гибнут. Другие мутации полулегальны, т. е. больщинство гомозиготных по ним особей гибнет, хотя некоторые выживают. Наконец, существуют субвитальные мутации, понижающие приспособленность гомозиготных по ним особей, но не слишком резко. ОднакО в гетерозиготном состоянии летальные, полулетальные и субвитальные аллели могут как снижать приспособленность своих носителей, так и быть совершенно нейтральными (рецессивы) нли даже повышать приспособленность. В первом случае мутация не обладает доминантностью по приспособленности (строго говоря, доминантность промежуточная). Во втором она полностью рецессивна,, поскольку в гетерозиготе действие мутантного гена полностью замаскировано. В третьем случае мутантный ген обладает сверхдоминантностью или гетерозисным эффектом (рис. 6.6). Очевидно,, поведение аллеля как в гомозиготном, так и в гетерозиготном состоянии определяет его селективное преимущество или неблагоприятный эффект в данной популяции. Напомним, что при своеМ. первом появлении мутантный аллель всегда находится в гетерозиготном состоянии, его судьба на ранних этапах зависит от того, каким он обладает действием в этом состоянии. Только после того> как частота мутантного гена повышается (в результате отбора), он становится у некоторых особей гомозиготным. [c.142]

    Теоретически в случае рецессивных болезней можно использовать непрямой метод. С каждой гомозиготой, не оставившей детей, популя1щя теряет два мутантных гена, которые, для поддержания равновесия, должны компенсироваться мутациями. Однако применение этого метода требует выполнения двух условий. Селективная вредность должна быть свойственна только гомозиготам, а гетерозиготный генотип должен быть селективно нейтральным. Согласно закону Харди—Вайнберга (см. разд. 3.2), частота гетерозигот равна 2рд, а частота больных гомозигот Следовательно, гетерозиготы встречаются гораздо чаще, чем больные гомозиготы, особенно в случае редких наследственных болезней. Поэтому при небольшой селективной вредности аллеля для поддержания генетического равновесия необходима высокая частота возникновения мутаций если же аллель обладает небольшим преимуществом, генетическое равновесие может сохраняться в отсутствие мутаций. [c.161]

    Не все мутации в гене муковисцидоза приводят к соответствующей клинической картине. Очевидно, что многие мутации нейтральны, как и по ряду других генов (глобины, рецептор ЛПНП и др.). Вместе с тем установлено, что более 10 мутаций, не приводящих к клинической картине муковисцидоза, способствуют развитию диссеминированных бронхоэктазов неизвестной природы, цирротических процессов в печени. Возможна также связь с эмфиземой лёгких. Гетерозиготность по патологическим мутациям в 2 раза чаще встречается у больных с хроническим панкреатитом. [c.140]


Смотреть страницы где упоминается термин Гетерозиготность и нейтральные мутации: [c.38]    [c.459]    [c.258]    [c.369]    [c.493]   
Генетические основы эволюции (1978) -- [ c.218 ]




ПОИСК





Смотрите так же термины и статьи:

Нейтральности



© 2025 chem21.info Реклама на сайте