Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Наследственные редкие

    Синдром Дауна-одно из наиболее распространенных тяжелых наследственных заболеваний он встречается примерно у одного из каждых 700 живых новорожденных. Частота возникновения описанного хромосомного нарушения оценивается как 7,3 на 1000, т.е. впятеро выше, чем при рождении 4/5 зародышей-трисомиков по хромосоме 21-гибнет при спонтанных абортах. Вероятность рождения ребенка с синдромом Дауна возрастает с возрастом матери. У женщин старше 40 лет дети с синдромом Дауна рождаются в 40 раз чаще, чем у двадцатилетних (рис. 21.29). (Эта возрастная зависимость относится к синдрому Дауна, обусловленному трисомией, но не касается более редких случаев, связанных с транслокацией хромосом 21 и 14.) Другие факторы, такие, как возраст отца или число уже рожденных женщиной дет ей, по-видимому, не влияют на вероятность возникновения синдрома Дауна. Трисомия возникает при слиянии нормальной гаметы с гаметой, содержащей две гомологичные хромосомы в результате неправильного расхождения хромосом в мейозе. Зависимость доли новорожденных с синдромом Дауна от возраста матери связана, вероятно, с увеличением частоты нерасхождения хромосом в мейозе. [c.63]


    Мутагенные вещества вызывают нарушения в наследственном аппарате человека, отражающиеся на его потомстве. Вещества, действующие на репродуктивную функцию, оказывают вредное влияние на развитие плода в организме матери. В нефтеперерабатывающей и нефтехимической промышленности ука-зан[[ые вещества в производственных процессах встречаются редко. [c.41]

    Многие генетические болезни очень редки и встречаются не чаще чем у одного человека из 10 000, но некоторые, например кистозный фиброз, поражают одного из 2500. Общее число страдающих наследственными болезнями превышает, как полагают, 2% от числа рождающихся. Многие из них погибают в младенчестве. Еще большее число людей (более 5%) страдает от диабета и психических заболеваний, также отчасти генетически обусловленных. Поскольку появление новых мутаций — непрекращающийся процесс, генетические заболевания представляют все более и более злободневную проблему. [c.40]

    Большое число нарушений в системах переноса было отмечено не только у бактерий. У человека описан целый ряд заболеваний, связанных с дефектами мембранного транспорта [48]. При некоторых таких заболеваниях нарушаются реабсорбция веществ в почечных канальцах и процесс всасывания в тонком кишечнике. Например, при цистинурии наблюдается образование камней из цистина в почках и мочевом пузыре. Такие больные выделяют за сутки до 1 г цистина при норме приблизительно 0,05 г. Известны также случа.и выделения больших количеств лизина, аргинина и орнитина. Существование подобных наследственных заболеваний свидетельствует о том, что и у человека клетки, подобно бактериальным, обладают способностью концентрировать различные аминокислоты (см. также гл. 14, разд. Б.З) и другие вещества. В клетках почечных канальцев вещества поглощаются на одной стороне клетки (на рис. 1-3 это нижняя часть клетки) и выделяются в кровоток с другой ее стороны. Еще одно хорошо изученное, но очень редко встречающееся нарушение абсорбционных процессов у человека приводит к развитию почечной гликозурии. В этот процесс также вовлечены проксимальные почечные канальцы. Такая аутосомная доминантная мутация может быть неправильно диагностирована как сахарный диабет. В действительности же люди с подобным дефектом чувствуют себя, как правило, хорошо, и это состояние не считают болезнью. [c.360]

    Ко второму типу относятся изменения признаков, которые первоначально возникают как редкие события в популяции особей (с частотой 1 на Ю —10" клеток). Если измененные особи имеют некоторое преимущество перед неизмененными, выражающееся в повышенной скорости роста или жизнеспособности, они постепенно накапливаются в популяции и вытесняют исходные особи. Изучение особенностей второго типа изменений привело к заключению, что последние возникают случайно. И наконец, эти изменения постоянны, т.е. передаются из поколения в поколение при размножении организма. Такой тип изменчивости был назван наследственным. [c.146]


    Указанные условия равновесия важны также для биологической изменчивости. При нормальных условиях жизни и при строго постоянной среде генетическая изменчивость нежелательна и предотвращается тем, что полигены образуют блоки, более или менее прочно связанные благодаря сцеплению. На случай, если среда изменится и возникнет необходимость в новых наследственных комбинациях, в хромосомах существует резерв изменчивости, который реализуется в редких случаях перекреста. Эксперименты по отбору у дрозофилы показывают, что такое представление нельзя считать голой спекуляцией. На первых стадиях таких экспериментов отбор довольно быстро дает некоторые ограниченные результаты, обусловленные обычной рекомбинацией хромосом. Когда же спустя некоторое время блоки генов в хромосомах оказываются разорванными перекрестом, отбор дает новые и часто гораздо более значительные результаты. [c.112]

    Ряд других, довольно редко встречающихся наследственных заболеваний также вызван накоплением гликогена, которое обусловлено по существу той же причиной, а именно сильным ингибированием процесса расщепления гликогена в гликолитическом метаболизме, что в свою очередь связано с недостаточной активностью какого-нибудь из ферментов фос-фофруктокиназы, киназы фосфорилазы печени, фосфорилазы печени или глюкозо-6-фосфатазы печени. В последнем случае накопление гликогена объясняется тем, что его запасы не поступают из печени в кровь в виде свободной глюкозы. При одном из таких заболеваний имеет место нехватка ветвящего фермента, участвующего в синтезе гликогена, в результате чего образующийся гликоген содержит необычно длинные неразветвленные ветви. Другая же форма заболевания связана с недостатком фермента, ответственного за расщепление гликогена в точках ветвления, в результате чего легко из печени может удаляться лишь ограниченное количество глюкозы, образующейся в результате расщепления только наружных неразветвленных ветвей гликогена. [c.510]

    Некоторые редкие нарушения в метаболизме аминокислот являются наследственными. [c.355]

    В опытах с животными и при проведении наблюдений в сельскохозяйственной практике определяют не только острую токсичность, которая проявляется преимущественно в результате однократного приема или действия токсического вещества на организм. Особое внимание уделяют изучению возможного хронического действия исследуемого вещества. Чаще всего хроническая токсичность проявляется в виде злокачественных опухолей (канцерогенез), тератогенного эффекта (пороки развития у новорожденных, матери которых подвергались влиянию токсических веществ) и, наконец, в виде мутаций. Мутации представляют собой изменения в наследственных факторах организма. В настоящее время мутации встречаются в сельскохозяйственной практике очень редко. В природе они возникают спонтанно, чаще всего в еще недостаточно изученных условиях или в результате сильного массированного воздействия на организм химических или физических факторов. [c.182]

    Гораздо реже (по крайней мере — в природе) встречаются случаи межвидовой (отдаленной) гибридизации. Причина этого в том, что смысл наследственного текста , как и слов естественного языка, зависит от того, в каком сочетании (контексте) они встречаются. Поэтому добавление слов может не только обогатить текст смыслом, но и сделать его бессмысленным, если добавляемые слова плохо сочетаются с присутствующими. Когда при скрещивании гибриду достается наследственный текст , состоящий из слов , свойственных языкам разных видов, он редко бывает осмысленным, а формирующийся на его основе организм обычно теряет многие достоинства, которыми обладали родители. Не случайно английский натуралист Дж. Рей, который еще в ХУП в. ввел понятие вида, близкое к современному, главным считал невозможность скрещивания между особями разных видов. Говоря современным языком, сетчатое родство внутри вида — норма, за его пределами — исключение. [c.88]

    Мутации представляют собой редкие случайные события, прежде всего в том смысле, что они являются редкими исключениями в нормальном регулярном процессе репликации ДНК, при котором обычно происходит точное копирование наследственной информации, закодированной в последовательности нуклеотидов. [c.23]

    Но НИ экспериментальные, ни другие наблюдения пока не заставляют нас делать такие решительные выводы. Эволюция путем аккреции , видимо, редка [1203, 1449]. Перенос генов между различными бактериями, несомненно, важное явление, но по-видимому, самые фундаментальные свойства клетки при этом не затрагиваются. Следует отметить, что биоэнергетические процессы (брожение, фотосинтез, дыхание) требуют особенно больших количеств хорошо интегрированных генов. Вся организация клетки должна быть приспособлена к процессам, посредством которых она получает полезную энергию и выполняет работу. Поэтому в настоящее время разумно будет принять, что в результате межвидовых и межродовых переносов генов изменяются лишь детали биоэнергетических процессов, но основные направления эволюции все же определяются обычной, вертикальной наследственностью. [c.29]

    Балансовая теория утверждает, что естественный отбор может стабилизировать изменчивость, если существуют гетерозиготность и расщепление генов (Дарвин, придерживавшийся теории слитной наследственности, не мог этого предвидеть). Так называемый уравновешивающий отбор может быть обусловлен а) преимуществом гетерозигот — гетерозигота, обладающая превосходством WAAWaa), будет, ПО определению, способствовать сохранению гомозигот б) отбором, зависящим от частоты в этом случае приспособленность является функцией частоты генов, так что по мере возрастания частоты данного гена его приспособленность снижается и отбор начинает благоприятствовать другому гену до тех пор, пока частота последнего не возрастет и не произойдет обратное. Такая ситуация может быть создана хищником, всегда выедающим особей с более обычными генотипами. Подобное же действие может оказать выбор брачного партнера так, например, самки дрозофилы, если им предоставляется возможность выбирать брачного партнера, чаще, по-видимому, спариваются с самцами, обладающими редкими признаками в) изменениями в давлении отбора в пространстве (различным генотипам благоприятствуют условия в [c.73]


    Наследственный дефицит лактазы. При этом относительно редком синдроме симптомы нарушенной толерантности развиваются очень быстро после рождения. Кормление пищей, не содержащей лактозы, приводит к исчезновению симптомов. Иногда у детей, как будто способных к перевариванию и вса- [c.295]

    Примером служит наследственное заболевание человека, называемое фенилкетонурией. Эта болезнь вызывается рецессивным аллелем, нарушающим превращение аминокислоты фенилаланина в тирозин. Люди, страдающие этой болезнью, выделяют с мочой аномально большие количества фенилпировиноградной кислоты. Почти у всех людей, которые систематически выделяют с мочой фенилпировиноградную кислоту, наблюдается та или иная степень умственной отсталости. Обычно эта отсталость выражена довольно сильно, приближаясь к идиотии или имбецильности, так что до размножения дело доходит редко. [c.162]

    Следует отметить, что фермент, катализирующий окислительное декарбоксилирование указанных а-кетокислот, высокоспецифичен (по аналогии с пируватдегидрогеназным и а-кетоглутаратдегидрогеназным комплексами) и также нуждается в присутствии всех пяти кофакторов (см. главу 10). Известно наследственное заболевание болезнь кленового сиропа , при которой нарушено декарбоксилирование указанных а-кетокислот (вследствие синтеза дефектного дегидрогеназного комплекса), что приводит не только к накоплению в крови аминокислот и а-кетокислот, но и к их экскреции с мочой, издающей запах кленового сиропа. Болезнь встречается редко, проявляется обычно в раннем детском возрасте и приводит к нарушению функции мозга и летальному исходу, если не ограничить или полностью не исключить поступление с пищей лейцина, изолейцина и валина. [c.459]

    Наследственными являются свыше 1000 болезней человека. Больщинство из них очень редки ( 10 ), но некоторые встречаются относительно часто Многие наследственные заболева- [c.442]

    У человека известно много различных наследственных нарушений аминокислотного обмена. В основе всех этих нарушений (большинство из них встречается редко) лежит мутация какого-нибудь гена, кодирующего определенный фермент, участвующий в превращениях данной аминокислоты. Под контролем Мутантного 1-ена синтезируется дефектный фермент, у которого в том или ином ключевом участке полипептидной цепи может стоять неправильная аминокислота кроме того, какой-нибудь аминокислотный остаток может быть утрачен или, наоборот, включен в полипептидную цепь. В одних случаях такой наследственно измененный фермент неактивен вообще, а в других проявляет лишь часть присущей ему активности, поскольку характерное для него значение Ки (или не соответствует норме. Большинство врожденных нарушений аминокислотного обмена у человека сопряжено с накоплением тех или иных промежуточных продуктов этого обмена. При некоторьк наследственньк заболеваниях такого рода нарушается нормальное развитие нервной ткани, что приводит к умственной отгстадости. [c.580]

    Редкий аллель а вызывает у человека наследственную анофтальмию (отсутствие глазных яблок). Аллель А обуславливает нормальное развитие глаза. У гетерозигот глазные яблоки уменьшены. Супруги гетерозиготны по гену А. Определить расщепление в по генотипу и по фенотипу. Мужчина, гетерозиготный по гену А (с уменьшенными глазными яблоками), женился на женщине с нормальным развитием глаз. Какое расщепление по фенотипу окажется среди его детей  [c.16]

    Мутации в реальной жизни индивидуального организма-события весьма редкие. Вероятность того, что в течение жизни одной клетки Е. oli произойдет мутация, составляет 10 Для клетки человека такая вероятность выше-порядка 10 эта величина была рассчитана, исходя из частоты встречаемости гемофи-лмм-генетической болезни, в основе которой лежит нарущение механизма свертывания крови, приводящее к длительным кровотечениям. Гемофилия была одним из первых наследственных заболеваний человека, природу которого удалось понять. Классический пример этого заболевания представляет собой гемофилия в семье английской королевы Виктории. Она была прослежена в трех поколениях ее потомков, принадлежащих к королевским семьям Англии, Пруссии, Испании, Греции и России. У человека наряду с молчащими , безвредными или благоприятными мутациями, не вызывающими осложнений, возможны мутации, приводящие к генетически наследуемым расстройствам, которые проявляются в нарушениях нормальных функций организма. К настоящему времени у человека найдены мутации примерно в 2500 различных генах многие из них либо ухудшают те или иные функции, либо приводят в конечном счете к летальному исходу. Остальные гены человека, подверженные мутациям, предстоит обнаружить. Очевидно, число выявленных наследственных заболеваний человека будет возрастать по мере появления методов, способных регистрировать последствия мутаций. Наследственные болезни ставят перед биохимией и медициной исключительно важную задачу по их распознаванию и лечению. [c.972]

    Разные виды аминоацидурии обнаружены и при ряде других, сравнительно редких расстройств, до сих пор еще полностью не расшифрованных. Синдром Фанкони [75—77] представляет наследственное заболевание, сопровождающееся аминоацидурией и выделением с мочой пептидов, бикарбоната и фосфата. Этому згболеванию могут сопутствовать остеомаляция, рахит и поражение печени [65, 78, 79] иногда при этом наблюдается и цисти-нурия, однако этот симптом явно не идентичен неосложненной цистинурии. Простую цистинурию следует отличать от цисти-ноза — значительно более тяжелого заболевания с ранним смертельным исходом. При этом страдании наблюдается генерализованная аминоацидурия наряду с системными нарушениями, которые связаны с отложением кристаллов цистина в тканях, в частности в ретикулоэндотелиальной системе [80— 86]. Существует мнение, что цистиноз и синдром Фанкони являются сходными заболеваниями [81]. При синдроме Фанкони концентрации аминокислот в крови обычно не отклоняются от нормы, и имеются данные о наличии дефекта в функции почек. На более поздних стадиях течение болезни может осложняться развитием поражения печени. [c.469]

    Если ДНК представляет собой генетический материал, то возникает весьма важный вопрос каким образом ДНК реплицируется столь точно, что при передаче генетических признаков очень редко возникают ошибки Так как количество ДНК, приходящееся на гаплоидный набор хромосом, есть величина постоянная, делящаяся клетка должна синтезировать ДНК- Для того чтобы наследственная информация, содерлсащаяс в ДНК, была передана без ошибок, вновь синтезированная ДНК должна представлять собой точную копию исходной. На фиг. 61 изображены схемы двух предполагаемых типов репликации ДНК консервативного и полуконсервативного. [c.327]

    У человека также, безусловно, возникают спонтанные мутации, и делались попытки определить при помощи различных методов частоту мутирования разных генов. Простейший из этих методов основан на том, что в редких случаях у одного из детей может проявиться доминантный признак, отсутствующий у обоих родителей. Это должно свидетельствовать о возникновении признака вследствие новой мутации. Проведенное в Дании изучение наследования так называемой хондроди-строфии показало, что примерно одна гамета на 24 ООО несет доминантную мутацию, обусловливающую это заболевание. Для 5 других наследственных заболеваний были найдены как более высокие, так и более низкие частоты мутирования. Средняя частота мутаций у человека, видимо, по крайней мере так же высока, как у дрозофилы, но данные, на которых основан этот вывод, еще недостаточно достоверны. [c.197]

    Возможно, что значительная часть непроизвольных выкидышей, случающихся у человека, также вызывается генетическими факторами, которые в гомозиготном состоянии вызывают уродство. Во всяком случае, у человека известно множество летальных и сублетальных факторов, обладающих тем или иным специфическим действием. О двух таких случаях уже говорилось ранее (см. фиг. XVII). Можно было бы привести значительно больше подобных примеров. Если даже ограничиться одними глазами, то можно перечислить сотни различных наследственных аномалий и дефектов органов зрения так же обстоит дело и с другими органа.ми. Следовательно, очевидно, что человек в этом смысле сходен с другими организмами, для которых характерно перекрестное оплодотворение с преобладанием диплофазы, т. е. в наших хромосомах содержится множество неблагоприятных генов, которые, однако, очень редко проявляются в потомстве от браков между людьми, не родственными друг другу. Разумеется, в хромосомах этих людей также заключены известные недостатки, но в большинстве случаев они представляют собой иные отклонения от нормы. Поэтому в большинстве случаев объединяющиеся при оплодотворении хромосомы образуют такие комбинации, что они удачно дополняют друг друга и, как правило, рождающееся потомство совершенно нормально и жизнеспособно. [c.292]

    Изучение близнецов — прекрасный метод для оценки сравнительного значения условий среды и генотипа в формировании различных признаков у человека. Хотя сходство между идентичными близнецами в среднем поразительно велико, оно все же редко бывает абсолютным, а иногда бывает выражено довольно слабо. Это показывает, что различия в условиях среды могут играть значительную роль и часто препятствуют проявлению известного генетического предрасположения. Все это должно ободрить врачей и педагогов, которые стремятся сохранить жизнь и здоровье человека и направить его интеллектуальное развитие по правильному пути. Следовательно, нет оснований сидеть сложа руки и фаталистически наблюдать за проявлением наследственности у разных индивидуумов. Влияние благоприятных условий среды, например хорошего образования, воспитания и правильной физической подготовки, несомненно, может в значительной мере улучшить свойства индивидуума если даже в некоторых случаях границы подобного улучшения могут оказаться относительно узкими. [c.450]

    Мы неоднократно слышали, что бактерии особенно легко приспосабливаются к новому окружению, в частности легко вырабатывают устойчивость к антибиотикам, например к стрептомицину и т.п. Как мы уже знаем, это возможно только потому, что благодаря мутациям и отбору удается преодолеть консерватизм механизма редупликации двойной спирали ДНК. Известно также, что рекомбинация мутировавших наследственных зачатков облегчается у высших организмов за счет полового процесса, который состоит в слиянии гамет с последующил мейозом. Спрашивается, не происходит ли рекомбинация или чтсьлибо соответствующее ей также и у безъядерных форм, в частности у бактерий. Известно, что бактерии размножаются с чрезвычайно высокой скоростью, По-это.чгу. если у них действительно происходит рекомбинация, пусть даже очень редко, можно ожидать, что именно у бактерий ее удастся обнаружить. В самом деле, очень скорс у бактерий, по крайней. мере у некоторых из них, были обнаружены такие фор.мы поведения, которые приводят к весьма успешной рекомбинации, В то же время мейоз здесь отсутствует. Поэтому в данном случае говорят о парамейотических или просто пара-сексуальных процессах или системах. Известны по меньшей мере три различные парасексуальные системы, и по целому ряду причин желательно было бы ознакомить с ними читателя. При этом мы можем воспользоваться для их описания некоторыми понятия.ми, нрименяемы.ми при описании мейотической наследственности. [c.143]

    Везение в науке случается, но очень редко. Крупные открытия всегда являются (результатом напряженной и систематической умственной работы естествоиспытателя, в ходе которой форм,ируются идея и план исследования. Мендель с необычайной нроворливостью установил, за какими наследственными тризнаками должно следить, и понял, что для нахождения законов наследования необходим большой статистический материал. Мендель интерпретировал найденные факты с непререкаемой четкостью, однозначно сформулировав их не только словесно, но и математически. Так что, какое уж тут везение  [c.253]

    Особи, гетерозиготные по транслокациям, производят меньше потомства вследствие того, что некоторые из гамет не получают полного комплемента хромосом. Образующаяся при этом неполная стерильность наблюдается у многих растений п животных главным образом после ионизирующего облучения и других видов обработки, но редко встречается в природных популяциях. Спонтанные транслокации быстро исчезают из природных популяций вследствие низкой продуктивности гетерозиготных особей. Если популяция невелика и изолирована, гетерозиготность по транслокациям может наследственно передаваться всеми особями популяции [129]. Выпуск в природную популяцию особей, гомозиготных или гетерозиготных по транслокациям, уменьшает плодовитость насекомых пропорционально как количеству выпущенных особей с транслокациями, так и степени их стерильности, обусловленной транслокациями. Облучение комаров Aedes aegypti вызывает образование сцепленных с полом транслокаций между 1 и П хромосомой. Поскольку транслокации хромосомы I происходят вблизи от локуса, обусловливающего пол самца, то все самцы Fi имеют эти транслокации, а самки, оплодотворенные частично стерильными самцами расы с транслокациями, откладывают 80% нежизнеспособных яиц. [c.11]

    Нарушения биосинтеза порфиринов. Различные отклонения от нормального течения биосинтеза порфиринов ведут к нарушениям ряда функций организма. Изменение механизма превраш,ения порфобилиногена в уропорфирин является наследственным и приводит к возникновению очень редкого заболевания — врожденной порфирии. Основная масса порфиринов, образующихся в нормальном организме, относится к типу III порфирины типа I образуются в очень небольшом количестве и легко выводятся из организма. При врожденной порфирии, однако, аутоконденсация порфобилиногена протекает так, что образуется уропорфириноген I, который не может быть далее использован в биосинтезе гема и превращается в уро- и копропорфирины I. Эти порфирины не могут распадаться с образованием желчных пигментов и откладываются в организме (кости и зубы больного пигментированы и флуоресцируют при облучении ультрафиолетовым светом) или экскретируются. Порфирины, циркулирующие в крови, вызывают фотосенсибилизацию кожи, результатом чего являются тяжелые ожоги, и фотосепсибилизиро-ванный гемолиз эритроцитов, который стимулирует усиленный синтез гемоглобина и, следовательно, порфиринов типа I, а это еще более отягощает состояние организма. [c.145]

    Более эффективно по сравнению со стерилизацией вмешательство в хромосомный набор, которое вызывает транслокации и приводит к изменениям генетического кода. Идея вмешательства в хромосомный набор возникла почти как отход при изучении способа наследования у обыкновенного комара ulex pipiens), когда в результате скрещивания индивидуумов одного и того же вида, но разного происхождения появлялось только бесплодное потомство, а при блокировании сперматозоидов плазмой яйца потомства вообще не было. Данное явление называется плазматической несовместимостью (редкий, но очень хорошо изученный случай плазматической наследственности у животных), [c.261]

    В лаборатории можно развести огромное число дрозофил, что дает возможность обнаружить большое разнообразие наследственных вариантов, или мутантов. К 1915 г. Морган и его сотрудники обнаружили 85 различных мутантных типов дрозофилы, отличающихся от мух нормального, или дикиго, типа размером крыльев, окраской тела, цветом глаз, размером глаз и формой щетинок. Каждый из этих мутантов обнаруживался как отдельный, отклоняющийся от нормы индивидуум среди потомства, состоящего из тысяч нормальных мух. Поэтому был сделан вывод, что каждому из этих отклонений от нормы (мутантный признак) мухи обязаны своим возникновением в результате редкой спонтанной мутации тою гена, который контролирует этот признак. (В 1927 г. Г. Мёллер, ранее работавший с Морганом, показал, что облучение мух рентгеновскими лучами сильно повышает частоту мутирования этих генов по сравнению с частотой спонтанных мутаций.) Наличие этих мутантов сделало возможным проведение обширных опытов по скрещиванию, которые были поставлены для того, чтобы еще глубже, чем это было возможно ранее, проникнуть в тайну механизмов наследственности. Скрещивания двойных мутантов, т. е. мух, несущих два мутантных гена в двух разных хромосомах, с нормальными мухами, несущими соответствующие аллели дикого типа, вскоре подтвердили результаты, полученные Менделем на горохе. Рецессивные признаки исчезали в первом дочернем поколении и вновь появлялись, но уже в случайном сочетании среди мух второго дочернего поколения. Но когда стали проводить подобные дигибридтые скрещивания с мухами, у которых оба мутантных гена находились в одной и той же [c.27]

    Один из первых таких мутантов был обнаружен Херши, который заметил, что на каждые 10 или 10 стерильных пятен, образуемых фагом Т2 на чашках с агаром, засеянных клетками Е. oli, приходится одно пятно, довольно четко отличающееся от обычных стерильных пятен, у которых небольшой прозрачный центр окружен мутным ореолом. Эти редкие (вариантные) стерильные пятна имеют крупный прозрачный центр и четкие края (фиг. 140). Когда Херши отобрал материал из этого необычного стерильного пятна, выделил и повторно посеял содержащиеся в нем фаговые частицы, он обнаружил, что все они образуют вариантные стерильные пятна с той же морфологией, что и у исходного пятна. Иными словами, фаги исходного вариантного стерильного пятна размножаются в чистоте. Таким образом, появление вариантного стерильного пятна означает, что в культуре присутствует мутант фага Т2, который в процессе роста стерильного пятна дает начало мутантной линии. Этот мутантный фаг обладает наследственно закрепленной способностью образовывать стерильные пятна, которые по внешнему виду отличаются от стерильных пятен нормального фага, или, как его иначе называют, фага дикого типа. [c.279]

    Генетические исследования организации генома бактерий начались вскоре после того, как было показано, что именно ДНК является веществом наследственности у пневмококков. Бактерии, так же как и вирусы, представляют генетикам возможность работать с популяциями колоссальной численности, затрачивая на эксперимент сравнительно небольшое время. Описываемые в этой главе методы отбора позволяют выявлять и изучать очень редкие генетические события. Объектом наиболее обширных и тщательных исследований служили и продолжают служить кишечные бактерии Es heri hia oli и именно на них мы сосредоточим внимание в этой главе. Генетические свойства Е. соН характерны не только для этого вида бактерий, а методология генетических исследований, разработанная на Е. соИ, создает фундамент и для изучения других видов. [c.227]

    В первые десятилетия нашего века биометрический подход Гальтона привел ученых к значительным успехам. Появились представления о генетической изменчивости как, нормальных признаков, таких, как телосложение или интеллект, так и широкого круга патологий, таких, как умственная отсталость и психозы, эпилепсия, или соматических заболеваний-диабета, аллергии и даже туберкулеза. В ту пору казалось, что применимость менделевского подхода ограничивается случаями редких наследственных заболеваний постоянно возобновлявшиеся попытки использовать законы Менделя для объяснения наследования нормальных физиологических признаков и соматических заболеваний, как правило, предпринимались без критической оценки этого подхода. Первой важной победой менделевской генетики стало признание гипотезы трехаллельного наследования групп крови АВО, предложенной Бернштейном в 20-х гг. нашего века [240] (разд. 3.2.2). Дальнейшие успехи были достигнуты благодаря работам, проведенным на других организмах, таких, как Drosophila, бактерии и вирусы, в особенности бактериофаги. [c.13]


Смотреть страницы где упоминается термин Наследственные редкие: [c.679]    [c.103]    [c.446]    [c.103]    [c.437]    [c.114]    [c.367]    [c.367]    [c.158]    [c.355]    [c.299]    [c.463]    [c.476]    [c.477]    [c.32]    [c.97]   
Генетика человека Т.3 (1990) -- [ c.278 ]




ПОИСК





Смотрите так же термины и статьи:

Наследственность



© 2025 chem21.info Реклама на сайте