Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Мутации благоприятные

    Наконец, эти две гипотезы приводят к различным объяснениям видообразования, Если считать, что популяции почти полностью гомозиготны, то видообразование не может происходить до тех пор, пока не возникнут новые мутации, благоприятные в какой-либо новой среде, в которой обитает какая-либо изолированная популяция. При этом следует учитывать, что даже благоприятные мутации в нескольких первых поколениях обычно утрачиваются вследствие генетического расщепления и случайных изменений ири воспроизводстве потомства. Таким образом, вероятность закрепления мутации с приспособленностью 1 -j- s по сравнению с приспособленностью исходного дикого типа 1 составляет всего лишь 2s (Холдейн, 1927). Так как для видообразования требуется более чем один ген, то этот процесс становится маловероятным событием. Классическая гипотеза практически вновь воскрешает парадокс видообразования, который, как полагал Дарвин, он разрешил. Проблему перехода от одного типа или моды к другой, который, очевидно, имеет место при видообразовании, Дарвин решил, сконцентрировав внимание на изменчивости внутри вида и постулировав превращение внутригрупповой изменчивости в межгрупповую в результате [c.38]


    Точечные мутации - изменение одного основания или небольшого их числа. Последствия таких мутаций могут вызвать появление нового признака, благоприятного или патологического, повлиять на биосинтез нового белка, фермента или видоизменить какой-либо биохимический процесс -такие мутации не являются летальными. [c.53]

    Прокариоты, не содержащие клеточной стенки, обнаружены и в природе. Это группа микоплазм, сапрофитов и внутриклеточных паразитов растений, животных и человека. Формы, сходные с микоплазмами, были получены также опытным путем с помощью пенициллина, лизоцима и других факторов. Это так называемые -формы. В благоприятных условиях они обладают метаболической активностью и способностью к размножению. Предполагают, что микоплазмы произошли в результате мутации, нарушившей синтез веществ клеточной стенки, от обычных бактериальных форм аналогично тому, как в экспериментальных условиях получают генетически стабильные -формы. [c.36]

    При этих попытках пришлось столкнуться с одним специфическим затруднением как правило, мутанты обладают пониженной жизнеспособностью, которая часто связана с неблагоприятными изменениями в структуре хромосом. Нередко и более тонкие изменения, предположительно зависящие от истинных генных мутаций, также обладают отрицательным эффектом и дают начало мутантам, не имеющим хозяйственной ценности. Все же среди экспериментально полученных или естественно возникших мутантов можно выбрать небольшое число мутантов, не связанных с неблагоприятными изменениями и имеющих нормальную или повышенную жизнеспособность и урожайность. Может также случиться, что мутации, оказавшиеся неблагоприятными в исходной генотипической среде, дают более благоприятные результаты после скрещивания и рекомбинаций. В настоящее время соверщенно ясно, что новые гены или аллели, возникающие под действием излучения, относятся в основном к тому же типу, что и мутации, спонтанно возникающие в природе. Это значит, что наследственную изменчивость можно значительно усилить под действием излучения и других сходных факторов (см. стр. 210). [c.403]

    Как для более высоко организованных сельскохозяйственных объектов, так и для более простых продуцентов промышленной микробиологии возможен благоприятный прогноз селекционного вклада химических мутагенов. Он опирается на разнообразие генов, способных давать положительные мутации. Примерно одна треть или половина всех генов селекционного объекта обычно оказывается чувствительной к сильному мутагену, и при каждой обработке мутирует известная их часть. При этом есть вероятность получить при обработке новые продуктивные мутанты, совершенствующие селекционный гомеостаз. В части случаев ожидается возникновение повторных селекционно-полезных мутаций. [c.9]


    В спонтанном индуцированном мутационном процессе у растений возникают летальные мутации, хотя с несколько меньшей частотой, чем у животных, но подавляющее их большинство пе накапливается в гетерозиготном состоянии по той причине, что смена гаплоидного гаметофита и диплоидного спорофита у культурных растений вызывает гибель большинства гаплоидных геномов, несущих летальные мутации. Более благоприятные условия выбраковки леталей у растений обусловлены большей, чем у животных, автономностью гаплофазы растений. [c.23]

    Накопленный материал показывает, что освобождение популяции насекомых от летальных и полулетальных мутаций протекает медленно, иногда на протяжении десятков поколений, что создает благоприятные предпосылки для успешного практического применения хемостерилизаторов. Совершенно исключается возможность развития устойчивости насекомых к гормонам или их аналогам, вызывающим стерилизацию, поскольку гормоны являются продуктами желе-i внутренней секреции самих насекомых, без которых невозможны рост и метаморфоз насекомых. [c.32]

    Самонесовместимость имеется у многих плодовых деревьев. Переопыления растений, принадлежащих к одному клону, являются несовместимыми и не дают плодов. Поэтому при закладке садов следует использовать саженцы разных клонов, имеющих разные S-аллели. При неблагоприятных условиях цветения перекрестное опыление иногда затруднено и между совместимыми клонами. Для увеличения вероятности оплодотворения у плодовых важную роль имеет внедрение самосовместимых сортов. В этом случае урожай плодов не будет зависеть от погодных условий и наличия насекомых-опылителей во время цветения. Самосовместимые сорта сливы, как правило, более урожайны, чем самонесовместимые, особенно в районах с менее благоприятными условиями для опыления пчелами. Путем индуцирования 5/-мутаций лучами Рентгена удалось получить само-фер тильную черешню (Le-wis, 1956). [c.50]

    Хромосомные и генные мутации оказывают разнообразные воздействия на организм. Во многих случаях эти мутации детальны и нарушают развитие у человека, например, около 20% беременностей заканчиваются самопроизвольным выкидышем в сроки до 12 нед. при этом у половины абортусов выявляются хромосомные аномалии. Если в результате некоторых хромосомных мутаций определенные гены оказываются рядом, то иногда их совместный эффект может привести к появлению какого-либо благоприятного признака. Кроме того, сближение некоторых генов делает менее вероятным их разделение в результате кроссинговера, а в случае благоприятных генов это создает преимущества. [c.213]

    Анализируя таблицу, можно заметить, что в тех вариантах, где наблюдаются наибольшие превышения по выходу мутаций (1 и 3 суток воздействия ГХ), обработка семян ГХ немного повысила и число проростков в семьях (106 и 108%> сравнительно с вариантами без обработки ГХ). Однако это превышение недостоверно, поэтому в целом полученные результаты не противоречат неоднократно наблюдавшейся нами закономерности, заключающейся в том, что максимумы стимуляции и выявления мутаций не совпадают — выявление мутаций происходит не при лучших, а лишь при относительно благоприятных условиях пост-мутагенной репарации. [c.126]

    Более приемлемым является предположение, что белки и нуклеиновые кислоты развивались бок о бок с их частой взаимной трансляцией, так что изменения в любом из этих соединений могли влиять на эволюцию каталитических свойств и таким образом указывать, благоприятна ли возникшая мутация. [c.142]

    Сторонники теории нейтральности молекулярной эволюции признают, что большая часть возможных мутаций любого гена вредна для их обладателей, и поэтому эти мутанты элиминируются путем естественного отбора или сохраняются при очень низкой частоте. Эволюцией морфологических, поведенческих и экологических признаков управляет в основном естественный отбор, поскольку он определяет возрастание частоты благоприятных мутаций за счет в )едных. При этом, однако, предполагается, что в каждом локусе может существовать несколько благоприятных мутаций, равноценных с точки зрения их приспособленности. Эти мутации не подвержены действию естественного отбора, так как они не влияют на приспособленность своих обладателей (и не изменяют их морфологических, физиологических и поведенческих признаков). Согласно теории нейтральности, эволюция на молекулярном уровне заключается главным образом в постепенном случайном замещении одних нейтральных аллелей другими, функционально равноценными первым. Эта теория признает, что хотя благоприятные мутации существуют, они возникают чрезвычайно редко и потому не оказывают большого влияния на общую эволюционную скорость аминокислотных и нуклеотидных замен. [c.234]

    Вернемся теперь к вопросам, поставленным в начале этого раздела насколько отбор важнее, чем повторные мутации Обратите внимание на то, что для повышения частоты данного аллеля в результате мутирования при отсутствии отбора необходимо, чтобы данная мутация время от времени возникала вновь, т. е. повторялась. Рассмотрим мутирование в одном направлении от Л к а, происходящее с частотой и. Вообще обычно происходит также обратное мутирование от а к Л, уравновешивающее эффект первого процесса. Однако мы пренебрежем обратными мутациями и используем наиболее благоприятную систему для изменения частоты аллеля путем мутаций. Согласно оценке Холдейна, сделанной на основе наблюдений по дрозофиле и примуле, частота мутаций равна примерно 10 на один ген эта оценка была подтверждена в дальнейшем исследованиями, проводившимися на других организмах. Холдейн вычислил потенциальное воздействие мутаций следующим образом частота аллеля Л в первом поколении потомков (р1) равна (1 — и)ро (где ро — исходная частота Л), а во втором поколении потомков (рг) она равна (1 — )р1 или (1 — ) Ро и так далее. Записав эти формулы в общем виде, р(=(1 — ) ро, и разделив правую и левую части на ро, а затем прологарифмировав, получим [c.49]


    Мутации (в их современном общем смысле) представляют собой в конечном счете источник изменчивости. Это могут быть мелкие (точковые) или крупные (хромосомные) мутации, однако мелкие мутации скорее могут привести к благоприятным изменениям, чем крупные, а поэтому они играют более важную роль в эволюции. Принципиально важное значение имеет тот [c.54]

    Поток генов (обмен генами) между популяциями может быть подавлен какой-либо физической или географической преградой. Этот процесс называют аллопатрическим видообразованием. В принципе возможен также альтернативный процесс — подавление обмена генами в популяциях, обитающих в одной й той же области — например если носители благоприятных мутаций спариваются преимущественно между собой и если отбор [c.111]

    Мутантные штаммы обычно неустойчивы и самопроизвольно теряют приобретенные в результате мутации благоприятные качества. Поэтому особенно ценны устойчивые мутанты — сверхпродуценты целлюлаз. [c.100]

    Биологическая эволюция была бы невозможна без мутаций. Естественный отбор сохраняет мутации, благоприятные для существования вида, и уничтожает, отбрасывает юредные мутации. Но об этом дальше. [c.258]

    Известно, что в соматических клетках иногда возникают случайные мутации. Полезные мутации, т. е. мутации, благоприятные для несущей их клетки, могут распространиться, так как они дают возможность своим носителям делиться быстрее, чем другие клетки это в особенности относится к клеткам, участвующим в борьбе с инфекцией. Чем больше они преуспевают, тем более многочисленными они могут оказаться. Таким образом, мутантный ген размножается, а при этом повышаются его шансы на то, что он будет захвачен вирусами и перенесен в другие клетки, возможно в том числе и в клетки зародышевой линии. По-видимому, у любого индивидуума существует период отбора соматических мутаций, предшествующий прохождению мутаций сквозь фильтр дарвиновского естественного отбора. Стеель считает, что этот процесс должен ускорять эволюцию и позволяет легче объяснить эволюцию таких сложных и координированных органов, как глаз. [c.39]

    Есть ли необходимость в создании новых генов Оказывается, да. Мутации происходят часто, но сохраняются очень немногие, и далеко не все они благоприятны. А управляемый мутагенез позволяет обойти эти трудности как по существу мутации, так и по времени ее появления. Еще одним важным достижением биоорганической химии и генной инженерии является химический синтез олигонуклеотидов, практически генов. Первый ген из 150 нуклеотидных пар синтезировал в 1967 г. X. Г. Корана и его сотрудники. Это был гея одной из тРНК. Х.Г. Корана первым осуществил так называемый блочный синтез, когда одна половина блока [c.61]

    Прокариоты, не содержаш,ие клеточной стенки, обнаружены и в природе. Это группа микоплазм, сапрофитов и внутриклеточных паразитов растений, животных и человека. Отсутствие у них клеточной стенки повлекло за собой ряд морфологических, культуральных и цитологических особенностей. Функции клеточной стенки у микоплазм частично выполняет ЦПМ. Формы, сходные с микоплазмами, были получены также опытным путем с помош ью пенициллина, лизоцима и других факторов. Это так называемые Ь-формы. В благоприятных условиях они обладают метаболической активностью и способностью к размножению. Ь-формы могут быть генетически стабильными. Суш,ествует точка зрения, что миконлазмы произошли в результате мутации, нарушившей синтез веш еств клеточной стенки, от обычных бактериальных форм аналогично тому, как в экспериментальных условиях получают генетически стабильные Ь-формы. [c.19]

    Совершенно ясно, что энергия делокализации приобретает важное шачение как фактор стабильности, или выживаемости , биомолекул Гот факт, что биомолекулы содержат большое число сопряженных свя- ей, является весьма благоприятным обстоятельством, так как в этом злучае даже такой грубый метод, как ЛКАО МО в приближении Хюкке-П.Я, может значительно облегчить задачу установления электронной зтруктуры и в связи с этим определение центров биохимических процессов В ряде случаев подобные расчеты даже позволяют решать чрезвычайно сложные биохимические проблемы, такие, как природа мутаций, проблема канцерогенности, изучение противоопухолевой активности пуриновых антиметаболитов в химиотерапии рака и пр [c.61]

    Интересен вопрос и о физиологическом действии перекиси водорода на молекулярном уровне. Показано, что перекись водорода может вызвать мутации, и в ряде литературных источников [442] описываются условия и природа этого эффекта. Последний иногда считают радиомиметическим эффектом, причем он представляет интерес с точки зрения образования перекиси водорода в живых организмах прн действии ионизируют,их излучений (см. стр. 60). Механизм этого мутагегпюго действия точно еще не известен, а поэтому заслуживают внимания различные высказанные мнения и точки зрения. Процессы мутации находятся в близком родстве с карциногеиезом, и, как указывает Дженсен (см. в работе [443] стр. 159), необходимо различать возникновение опухоли и ее развитие факторы, имеющие значения для одного из этих явлений, могут ие оказывать влияния на другое. Мутагенное действие перекиси водорода изменяется также в зависимости от легкости доступа ее к клеточным ядрам (см. в работе [443] стр. 116). Процесс может зависеть и от возможного изменения содержания каталазы в разных частях клетки. Шнейдер (см. в работе [359] стр. 273) считает, что каталаза в клеточном ядре почти отсутствует и находится в растворимой форме в цитоплазме однако мнения по этому предположению расходятся [443]. Тем не менее установлено [444], что каталаза устойчива против рентгеновского облучения. Логическим выводом из того, что рентгеновские лучи и подавляют опухоли и вызывают образование перекиси водорода, была мысль, что перекись водорода может оказывать благоприятное влияние на лечение рака. Такого рода опыты проводились (см. в работе [443] стр. 149 [445]) и проводятся сейчас, но пока еще положительных результатов не получено. Возможно, что перекись, образующаяся при действии излучения, представляет органическую перекись или перекись водорода в форме аддитивного соединения, причем высказана мысль (см. в работе [443] стр. 149), что эти соединения не разлагаются каталазой. Большинство авторов в на- [c.358]

    Ход эволюции в значительной мере зависит от мутаций, которые изменяют существующие гены, образуя вместо них новые аллели (варианты) этих генов. Предположим, что у двух особей в некоторой популяции возникли благо-приятшле мутации, затрагивающие разные генетические локусы, а значит, и разные функции. У бесполого вида каждая из этих особей даст начало клону Мутантных потомков, и два новых клона будут конкурировать до тех пор, пока один из них не одержит верх. Один из благоприятных аллелей, появившихся благодаря мутациям, будет, таким образом, распространяться, тогда как другой в конце концов исчезнет. Обе мутации одновременно не могут быть полезны для представителей данного вида, если они не возникнут последовательно в одной и той же клеточной линии а пожольку благоприятные мутации редки, пройдет, как правило, много времени, прежде чем это случится. Напротив, у вида, размножающегося половым способом, новые полезные аллели, появившиеся благодаря мутациям в разных локусах у разных особей. [c.9]

    Рис, 1Ф5. Эта схема показывает, каким образом половое размножение способствует распространению в популяции полезных мутаций. А, В н С-три благоприятные мутации, возникшие в трех различных локусах мутация А обеспечивает наибольшую приспособленность, но при этом лучше всего приспособлены особи, несущие одновременно все три мутации А, В и С. В бесполой популяции мутации А, В и С возникают вначале лишь у отдельных особей, и эти особи конкурируют друг с другом, а также с исходными немутантиыми организмами А побеждает и закрепляется в популяции, тогда как В и С элиминируются. Особи АВ не появляются до тех пор, пока у потомков А не произойдет мутация В, а особи АВС-до тех пор, пока не произойдет мутация С у особи АВ. В популяции с половым размножением мутации X, В и С, как и раньше, возникают независимо у различных особей, но благодаря генетической рекомбинации могут быстро образовываться гаметы АВ, АС и ЛВС. Таким образом, в популяции одновременно распространяются все три благоприятные мутации, и она быстро приобретает генотип АВС. [c.10]

    Г ипотетическая благоприятная мутация, при которой замена аминокислоты приводит к об разованию белка с улучшенной биологической активностью, дающей мутантному организму какое-либо преимущество предсказать благоприятную замену аминокислоты невозможно [c.970]

    Мутации в реальной жизни индивидуального организма-события весьма редкие. Вероятность того, что в течение жизни одной клетки Е. oli произойдет мутация, составляет 10 Для клетки человека такая вероятность выше-порядка 10 эта величина была рассчитана, исходя из частоты встречаемости гемофи-лмм-генетической болезни, в основе которой лежит нарущение механизма свертывания крови, приводящее к длительным кровотечениям. Гемофилия была одним из первых наследственных заболеваний человека, природу которого удалось понять. Классический пример этого заболевания представляет собой гемофилия в семье английской королевы Виктории. Она была прослежена в трех поколениях ее потомков, принадлежащих к королевским семьям Англии, Пруссии, Испании, Греции и России. У человека наряду с молчащими , безвредными или благоприятными мутациями, не вызывающими осложнений, возможны мутации, приводящие к генетически наследуемым расстройствам, которые проявляются в нарушениях нормальных функций организма. К настоящему времени у человека найдены мутации примерно в 2500 различных генах многие из них либо ухудшают те или иные функции, либо приводят в конечном счете к летальному исходу. Остальные гены человека, подверженные мутациям, предстоит обнаружить. Очевидно, число выявленных наследственных заболеваний человека будет возрастать по мере появления методов, способных регистрировать последствия мутаций. Наследственные болезни ставят перед биохимией и медициной исключительно важную задачу по их распознаванию и лечению. [c.972]

    В то время как фенольные соединения собственной пыльцы, будучи свойственны данному виду по своему составу и дозировке, оказывают благоприятное действие на процесс опыления и оплодотворения (а может быть, и антимутагепное действие), фенольные вещ ества чун еродной пыльцы, не свойственные данному виду, могут привести к определенным перестройкам и нарушениям в хромосомном аппарате, что в конечном итоге вызывает наследственные новообразования типа мутаций. Изучение пыльцы некоторых видов растений показало, что каждому из них свойственен свой тип фенольных соедипений, являюш ийся таксономическим показателем (рис. 2). Можно предполагать, что взаимодействие антимутагенных и мутагенных свойств полифенольных соединений собственной и чужеродной пыльцы играет определенную роль в естественном мутагенезе. [c.300]

    Редко, однако, бывает, чтобы мутантный ген немедленно по возникновении обладал благоприятным эффектом. В боль шинстве случаев потенциальные возможности мутантной фор мы выявляются лишь в результате рекомбинации. У пере крестнооплодотворяющихся организмов постоянная перегруп пировка генов вызывает генотипические различия между всеми особями, кроме монозиготных двоен. Наряду с этим происходит генотипическая адаптация к условиям внешней среды, в процессе которой неподходящие комбинации генов элиминируются, а лучшие становятся преобладающими. Когда происходит новая мутация, то новый аллель комбинируется с другими генами, составляющими ту генотипическую среду, в которой появился мутантный аллель. Благодаря естественному отбору (или искусственному отбору у культурных растений и домашних животных) постепенно генотипической средой мутантного гена станет та, в которой он обеспечит наилучшую жизнеспособность и плодовитость либо другие благоприятные признаки. Таким образом, мутантный ген, первоначально обладавший бесспорно вредным эффектом, имеет известные возможности стать безвредным или даже полезным для организма в результате изменения генотипической среды. [c.202]

    При охвате любой проблемы совокупными методами сопредельных наук увеличивается компетентность решения каждой. Приведем несколько примеров, касающихся генетики, заинтересованной Б большинстве случаев в использовании при экспериментах четко выраженных п наиболее контрастных или других благоприятных для точного анализа признаков, безотносительно к тому, представляют ли они значение для отбора или нет. Так, в очень больших опытах по анализу частоты прямых или обратных мутаций известных генов иод влиянием весьма сильных химических мутагенов практически не обнаруживаются селекционно значимые лтутации, вне зависимости от того, изучается ли при этом чисто лабораторный или селекционно значимый объект. [c.4]

    Когда мутагенной обработке подвергается материал, вэятый непосредственно из детерминированных естественным отбором условий, успех более вероятен. Возникшие разнообразные мутации сразу возвращаются в ту же среду и выделяются полезные мутанты нескольких видов организмов, более благоприятно отвечающих всем условиям жизни внутри данного очистного устройства. [c.30]

    Другая грань конструктивной роли необратимых процессов я резкого различия между порядком и случайностью открывается перед нами, если мы рассмотрим в качестве примера механизм биологической эволюции. Со времен Дарвина принято считать маловероятным, что биосфера является тем статическим, гармонично детерминированным миром, который некогда открылся Кеплеру, созерцавшему звездное небо. Биологические виды и даже предбиологические макромолекулярные соединения [1.11, 12] являются самоорганизующимися системами. Они непрестанно становятся , т. е. пребывают в состоянии возникновения, которое существенно зависит от случайных событий. Случайно и независимо от направления эволюции создается обширный банк наследственных генетических вариаций. Этот банк служит бесценной сырьевой базой для эволюции. Именно в нем эволюция находит благоприятные вариации, частота которых в популяции последовательно возрастает и стабилизуется точными, однозначно определенными законами передачи наследственных признаков. Нетрудно видеть, что отличительная особенность эволюционной теории, заведомо не имевшая аналогов в физических науках в те времена, когда создавалась эволюционная теория, придает случайным событиям необычайно важное значение. Мутации играют роль случайного двигателя прогресса. Однако мутации приводят и к гораздо более важным и далеко идущим последствиям, поскольку именно такие случайные события наугад выбирают один из нескольких возможных путей эволюции. По общепринятому ныне мнению исход эволюции биосферы не определен однозначно. Если бы жизнь на какой-нибудь другой планете развивалась в тех же условиях, в каких происходила эволюция живого на Земле, то мы вполне готовы к тому, что формы жизни могли бы быть совершенно иными (не исключено даже, что в основе их лежала бы совершенно другая химия). По общему мнению при надлежащих условиях возникновение жизни неизбежно. В этом смысле жизнь — явление физическое, материальное, детерминированное. Однако из сказанного отнюдь не следует, что жизнь предсказуема. Наоборот, на более современном яэыке можно было бы сказать, что в процессе развития жизнь непрестанно осуществляет случайный выбор одного из многих (быть может, даже бесконечно многих) возможных сценариев. Предсказать достоверно, какого именно сценария будет [c.15]

    В штамме бактерий, у которых имеется полная система ферментов для синтеза гистидина, т. е. у клеток His , при низкой концептрации гистидина и благоприятных условиях питания удавалось получить концентрации соответствующих ферментов, в 10 — 15 раз бблыпие, чем обычные. При подавлении гистидином концентрации ферментов падали не до нуля, а примерно до той низкой концентрации, которая наблюдается обычно в диком штамме. В этом случае не было получено конститутивных мутантов, но зато найдены точечные мутации, расположенные на гене-. тической карте у края всей области, нри которых выключался одновременно синтез всей серии ферментов, ведущих к гистидину. Это — мутации оператора, выводящие из строя одним ударом весь онероп. [c.494]

    Однако у представителей некоторых низших типов, в том числе у моллюсков, кольчатых и круглых червей, деление и перемещение клеток в высшей степени упорядочены и у всех особей осуществляются одинаково. Столь полная воспроизводимость результатов была использована при изучении крошечной прозрачной нематоды aenorhabditis elegans. Это животное характеризуется простым и практически неизменным строением, и его развитие можно проследить клетка за клеткой на всем пути от яйца до взрослого организма. Здесь можно вычертить полную генеалогию каждой клетки. На этом фоне удается очень точно отметить эффекты мутаций и иных экспериментальных воздействий. Такой метод позволяет связать определенные гены с конкретными этапами в реализации программ, контролирующих развитие клеток. Однако мы увидим, что изучение внутренней логики программы отнюдь не простая задача, даже в таких благоприятных условиях ее сложность во многом обусловлена наличием межклеточных взаимодействий. Мы закончим этот раздел примером, иллюстрирующим применение экспериментов в культуре для непосредственного анализа небольших фрагментов программы, контролирующей развитие отдельных клеток млекопитающих. [c.86]

    Растения и насекомые на протяжении долгого времени эволюционировали совместно, вследствие чего возникли различные связывающие их теперь благоприятные и неблагоприятные взаимодействия. В растениях вырабатывается много вторичных метаболитов, таких, как фенолы, алкалоиды, изопреноиды, фла-вононды и таннины, неприятные на вкус и потому отпугивающие насекомых и других животных. Насекомые в результате мутации становятся иногда нечувствительными к такому репелленту, а растения в свою очередь нередко начинают вырабатывать новый репеллент. Некоторые необычные аминокислоты и цианогенные соединения, содержащиеся в растениях, способны убивать насекомых, кормящихся на таких растениях. Защитить растения можно при помощи синтетических инсектицидов, иапример ДДТ однако у насекомых происходят мутации, которые иногда приводят к возникновению рас, обладающих способностью в процессе метаболизма разлагать ДДТ и переводить его в безвредные вещества. Синтетические инсектициды полезны и необходимы, но часто они вызывают и какой-нибудь нежелательный побочный эффект, например уничтожают наряду с вредителями также и многих полезных насекомых, подавляют почвенную микрофлору или оказываются вредными для животных и человека. При переходе от растений к потребителям первого, второго и третьего порядка такие соединения часто накапливаются, в результате чего их биологическая токсичность возрастает. В будущем эти проблемы мы, возможно, сумеем в какой-то мере разрешить, научившись использовать природные защитные вещества растений, такие, как инсектицид пиретрин, или гормоны насекомых, способные нарушать нормальное завершение их жизненного цикла. Некоторые из таких гормонов вырабатываются и у растений. Перспективны также феромоны — соединения, обеспечивающие у насекомых привлечение других особей или играющие роль сигнала тревоги с их помощью можно заманивать вредителей в ловушки или отпугивать их от посевов. [c.493]

    Можно привести и несколько иной пример представим себе снова две субпопуляции, но состоящие на этот раз из бессмертных особей. В одной из них появляется мутация, вызывающая старение, и это оказывается выгодным для данной группы, потому что ограничивает ее численность, очищает от изношенных особей и увеличивает простор для благоприятных мутаций. Группа, в которой возникло старение, сохраняется дольше другой группы. Этот пример отличается от примера со сверххищниками, потому что он связан с эволюцией признака, положительного для группы, — старения, а не отрицательного — быть сверххищником . Труднее представить себе, как это может реализоваться. Как, например, ген старения может закрепиться в субпопуляции Для закрепления такого гена необходимы либо повторные мутации, либо дрейф, либо эффект основателя, поскольку он не может закрепиться при помощи отбора бессмертные особи оставляют больше потомков, чем смертные, так что ген, обусловливающий старение, будет элиминироваться. [c.78]

    Объяснения, основанные на 4 6лаге для группы . Как уже говорилось, половое размножение порождает разнообразие внутри популяций. Кроме того, в результате расщепления оно создает возможность для отделения благоприятных мутантов от определенных генных комплексов, так что они могут распространиться по всей популяции, а также для отделения благоприятных генных комплексов от неблагоприятных мутантов. Партеногенез, однако, ограничивает разнообразие (при апомиксисе оно зависит от возникновения мутаций, что происходит ред- [c.80]


Смотреть страницы где упоминается термин Мутации благоприятные: [c.169]    [c.220]    [c.991]    [c.326]    [c.124]    [c.306]    [c.296]    [c.9]    [c.10]    [c.510]    [c.81]    [c.26]   
Молекулярная биология клетки Том5 (1987) -- [ c.9 , c.10 , c.12 ]

Генетические основы эволюции (1978) -- [ c.202 , c.204 ]




ПОИСК







© 2025 chem21.info Реклама на сайте