Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

РНК эукариот, образование

    Существенную часть генома эукариот (10—20 %) составляют повторяющиеся последовательности ДНК (см. гл. X), которые в основном представлены разными типами подвижных (мобильных) элементов. Критерием для отнесения фрагментов генома к числу подвижных часто служит лишь локализация по их флангам коротких прямых повторов, обычно включающих несколько нуклеотидных пар ДНК, что отражает молекулярные механизмы акта их внедрения в ДНК-мишень (см. гл. IV). Функциональная роль Подвижных элементов не ясна, но, во всяком случае, они в значи тельной степени определяют, как и у прокариот, изменчивость генома и, следовательно, могут играть большую роль в эволюции генома. Роль мобильных элементов в мутационном процессе, включая образование делеций н инверсий, уже была рассмотрена на примере прокариот (см. гл. VI). [c.221]


    Законная Р. г. наблюдается, напр., между двумя копиями к.-л. хромосомы. У эукариот (все организмы, за исключением бактерий и синезеленых водорослей) наиб, типичен обмен участками гомологичных хромосом в мейозе (деление клеток, в результате к-рого происходит уменьшение числа хромосом в дочерних клетках-осн. стадия образования половых клеток). Этот обмен может происходить между плотно конъюгированными хромосомами на ранних стадиях развития яйца или сперматозоида. Реже-законная Р. г. осуществляется при обычном делении клеток (с сохранением числа хромосом)-митозе. [c.229]

    Характерной особенностью клеток эукариот является присутствие митохондрий — сложных образований с двойной мембраной, близких по величине к бактериям (рис. 1-3 и 1-4). Внутренняя мембрана митохондрий образует многочисленные глубокие складки, так называемые кристы (гребневидные выросты). Наружная мембрана проницаема для соединений с небольшим молекулярным весом, но проникновение веществ во внутреннее пространство митохондрий (в матрикс) и выход из него находятся под строгим контролем внутренней мембраны. Хотя отдельные окислительные реакции протекают в ЭР, все же основные процессы, связанные с образованием и накоплением энергии, у аэробных организмов локализованы в митохондриях именно в этих органеллах происходит утилизация основной части кислорода. В свое время многие биохимики были крайне удивлены, обнаружив в митохондриях кольцевую ДНК с небольшим молекулярным весом. Далее оказалось, что ми- [c.33]

    У человека и высших животных в результате мейоза образуются гаметы— яйцеклетка и сперматозоиды. При их слиянии возникает снова диплоидное ядро, из которого путем последовательных митозов развивается взрослый организм. Стадия мейоза характерна для жизненного цикла всех эукариот, однако отнюдь не всегда этот процесс протекает в период, аналогичный соответствующему моменту жизненного цикла человека. Так, клетки многих простейших и грибов обычно гаплоидны. После слияния двух гаплоидных ядер с образованием диплоидной клетки быстро наступает мейотическое деление, в результате которого вновь возникают гаплоидные особи. Чередование гаплоидных и диплоидных фаз жизненного цикла часто встречается у низших растений и примитивных животных. Например, гаметы папоротника падают на почву и [c.42]

    Очевидно, что важную роль в ко-трансляционном сворачивании белка может играть образование дисульфидных связей между цистеиновыми остатками. Дисульфидные связи, скрепляющие третичную структуру, особенно распространены у секреторных белков эукариот. Наоборот, внутриклеточные белки чаще характеризуются свободными сульфгидрильными группами цистеиновых остатков. Действительно, условия внеклеточной среды, по сравнению с внутриклеточной, являются более окислительными. Дисульфидные связи, по-видимому, могут завязываться между цистеиновыми остатками растущей полипептидной цепи уже по мере ее прохода через мембрану в межмембранный просвет. Такие связи могут возникать спонтанно при достаточно окислительных условиях среды. Однако, во-первых, скорость спонтанного образования дисульфидных связей в белке, по сравнению со скоростью его синтеза и сворачивания, не велика во-вторых, в процессе сворачивания всегда существует вероятность образования дисульфидных связей между не теми остатками цистеина, которые должны образовать мостики в законченной свернутой белковой молекуле. Более 20 лет назад [c.286]


    Кроме того, у эукариот образование инициаторного комплекса требует наличия специальных инициаторных белков, которые называются общими факторами транскрипции. Рассмотрим некоторые из них применительно к синтезу мРНК. К ним относится ТАТА-связывающий белок, или ТСБ, а также 8—10 белков, ассоциированных с ТСБ. Они носят название ТСБ-ассоцииро-ванные факторы или ТАФ. ТСБ и ТАФ образуют комплекс ТФПД, или транскрипционный фактор Дрдя РНК-полимеразы II. [c.459]

    Молекулы предшественников зрелых клеточных РНК подвергаются расщеплению и химической модификации. Совокупность биохимических реакций, в результате которых уменьшается молекулярная масса РНК-предшественника и осуществляются разные способы химической модификации с образованием зрелых молекул РНК, называют процессингом. Процессинг наблюдается и в прокариотических клетках, но особенно аюжны превращения предшественников клеточных РНК в ядрах эукариот. Хромосомы эукариотической клетки, в которых осуществляется транскрипция, локализованы в ядре и отделены двойной ядерной мембраной от цитоплазмы, где протекает трансляция. В ядре синтезируются предшественники всех типов цитоплазматических РНК- Зрелые молекулы РНК транспортируются в цитоплазму. Механизм транспорта РНК из ядра в цитоплазму исследован недостаточно. Полагают, что процессинг РНК с образованием зрелых молекул продолжается и в ходе их транспорта в составе рибонуклеопротендных частиц через поры ядерных мембран. В клетках эукариот только незначительная часть, около 10%, транскрибируемых в ядре последовательностей ДНК выяыяется в составе цитоплазматических мРНК. Основная часть новообразованной РНК распадается в ядре и не обнаруживается в цитоплазме. [c.163]

    Гены рРНК у эукариот представлены тандемно повторяющимися копиями (100- 00), служащими матрицами для образования транскриптов, подвергающихся процессингу (рис. 98). Транскрибируемые последовательности разделены спейсерами, также играющими большую роль в транскрипции рРНК и ее регуляции (см. гл. X, [c.165]

    РНК полимераза П транскрибирует все гены эукариот, кодирующие белки, а также малые ядерные РНК и, по-видимому, РНК-компонент РНКазы Р. Рассмотрим лишь наиболее изученный механизм процессинга транскриптов, приводящий к образованию зрелых молекул мРНК, обычно содержащих 1500—2000 нуклеотидов. [c.172]

    Описанные случаи внедрения элемента сопровождаются мутациями с самыми разными фенотипическими проявлениями, обусловленными подавлением образования или, наоборот, гиперпродук-цией белка. Можно наблюдать полную или частичную реверсию мутаций к норме, вызванную вырезанием мобильного эле.мента при сохранении в составе хромодомы только одного ДКП. Перемещение мобильных элементов по геному могут способствовать распространению регуляторных сигналов (сайтов инициации транскрипции, сигналов полиаденилирования или энхансеров). Рать мобильных элементов в эволюции систем регуляции. может быть значительной, если принять во внимание, что геном эукариот кодирует транс-действующие белковые факторы, способные специфически регулировать инициацию транскрипции в районе ДКП. [c.230]

    Основа регуляции транскрипции в случае ДНК-содержащих вирусов эукариот та же, что и у ДНК-содержащих фагов,— взаимное расположение и сила промоторов и терминаторов. Но в эукариотных системах встречаются новые регуляторные элементы, прежде всего энхансеры (см. гл. IX). Кроме того, образование зрелых молекул мРНК у ДНК-содержащих вирусов эукариот обычно связано с разнообразными посттранскрипционными изменениями (процессингом) первичных транскриптов. Это обстоятельство вносит важный вклад в регуляцию экспрессии генов. [c.299]

    Наиболее простой цикл репликации / транскрипции вирусной РНК — это когда с геномной РНК снимается комплементарная копия и эта копия, в свою очередь, служит матрицей для синтеза геномной РНК роль мРНК в образовании всех необходимых для размножения вируса белков выполняет родительская РНК. Если отвлечься от частностей, то этот принцип реализуется у фага Ор и у вируса полиомиелита. Однако стратегии этих вирусов различаются в одном существенном отношении. Фаг Ор размножается в клетках прокариот, поэтому его (+)РНК может функционировать как истинная полицистронная мРНК. Хозяин вируса полиомиелита — эукариотная клетка. Соответственно на (+)РНК этого вируса имеется единственная точка инициации трансляции, и все зрелые вирус-специфические белки возникают в результате ограниченного протеолиза единого полипротеина-предшественника. Как и у ДНК-содержащих вирусов, у вирусов с РНК-геномом разные вирус-специфические белки требуются в разных количествах и в разное время, а образование всех этих белков из единого предшественника затрудняет количественную и временную регуляцию их производства. Поэтому у РНК-содержащих вирусов эукариот возникли механизмы, обеспечивающие появление разных мРНК для [c.331]

    Аденилатциклаза (КФ 4.6.1.1) эукариот является ферментом плазматических мембран. Она катализирует реакцию образования цАМФ из АТФ. Фермент состоит из трех компонентов рецептора к гормону, ГТФ-связывающего белка (Ы-белка) и каталитической су единицы. Гормональная активация аденилатциклазы осуществляется в результате следующих взаимодействий компонентов. Гормон, связываясь с рецептором, индуцирует образование тройного комплекса гормон — рецептор — Ы-белок. Связывание ГТФ с К-белком вызывает диссоциацию тройного комплекса с образованием активированного N-бeлкa. Активированный N-бeлoк, содержащий ГТФ, взаимодействует с каталитической субъединицей фермента, увеличивая ее активность. Гидролиз ГТФ до ГДФ и неорганического фосфата ГТФазой Ы-белка приводит к диссоциации комплекса Ы-белка с каталитической субъединицей и выключению фермента  [c.368]


    Переключения на более сложные программы развития наблюдаются у колониальных форм бактерий, например у миксобактерий, но химические сигналы, вызывающие переключение, еще неизвестны [145]. Выявлено, однако, что у относящихся к эукариотам миксомицетов типа Di tyostelium (гл. 6, разд. Е, 5), имеющих такую же программу развития, сигналом субстратного голодания служит выброс сАМР >. Повышение концентрации сАМР воспринимается другими клетками, у которых в ответ так изменяются процессы биосинтеза, что происходят дифференцировка и образование плодовых тел i[I35, 136, 146], Отдельные клетки начинают вырабатывать целлюлозу, а также мукополисаха-риды образуется трегалоза, которая накапливается в спорах. Синтезу этих продуктов предшествует обра.зование новых ферментов. [c.353]

    Г. эукариот принципиально отличаются от бактериальных. Внутри них последовательности нуклеотидов ДНК, несущие информацию для синтеза белка, не непрерывны, а разделены в одном или неск. местах участками, не кодирующими последовательность аминокислот. Такой прерывистый Г. транскрибируется весь подряд, а из образовавшейся РНК удаляются некодирующие участки. Области, соответствующие кодирующей части Г., сшиваются с образованием мРНК (т. наз. сплайсинг). [c.517]

    У прокариот (бактерии и синезеленые водоросли) ДНК организована в виде компактного образования-нуклеои-да, к-рый содержит всю хромосомную ДНК клетки длиной в неск. миллионов пар нуклеотидов (м.п.и.). Кроме того, у мн. прокариот и эукариот (все организмы, за исключением прокариот) обнаружены внехромосомные ДНК (т. наз. плазмиды) размером от неск. тысяч пар нуклеотидов (т.п.н.) до неск. десятков т.п.н. (м.п.н. и т.п.н.-принятые единицы длины двухцепочечной молекулы Н.к.). [c.298]

    По структуре центриоли сходны со жгутиками или более короткими образованиями — ресничками (эти термины, в сущности, синонимы), обычно находятся на поверхности клеток эукариот и являются органами движения. Неподвижные клетки тела человека также нередко имеют реснички. Например, эпителий бронхов несет 10 ресничек на 1 см Г26]. Модифицированные жгутики образуют светочувствительные рецепторы нашего глаза и рецепторы вкуса на языке. Жгутики и реснички несколько больше по диаметру (около 0,2 мкм), чем центриоли, и обладают характерной внутренней структурой они состоят из И полых микротрубочек диаметром 24 нм, организованных по схеме 9 + 2 (рис. 1-5 и 1-6). Каждая микротрубочка внешне похожа на жгутик бактерии, но существенно отличается от него по химическому составу. Базальное тельце, называемое также кинетосомой (рис. 1-5), по структуре, размерам и способу воспроизведения сходно с центриолью. Микротрубочки, подобные тем, которые входят в состав жгутиков, обнаружены также в цитоплазме клеток [27]. Они выглядят как маленькие канальцы, но действительно ли играют такую роль — неясно. Скорее всего микротрубочки выполняют опорную функцию цитоокелета . В аксоне нерва микротрубочки расположены по всей длине аксона и, вероятно, составляют часть механической системы переноса клеточных компонентов. [c.37]

    Если угол, образуемый двумя субъединицами при связывании а с /, несколько отличается от угла, соответствующего замкнутому кольцу, то образуется структура типа спирали, изображенная на рис. 4-6, Б. На один виток спирали может приходиться как целое число субъединиц, так и не целое (как в спиральной структуре, показанной на рисунке). Каждая последующая субъединица присоединяется к предыдущей за счет тех же гетерологических контактов типа aj, однако в этом случае могут иметь место и другие взаимодействия. Если поверхности субъединиц комплементарны и их геометрия благоприятствует образованию дополнительных контактов, то группы, расположенные в разных частях молекулы (например, Ь и к), могут соединиться друг с другом, образуя другую гетерологическую связь. Возможно образование и третьей гетерологической связи, с1, между двумя другими участками поверхностей субъединиц. Если контакты aj, bk и l достаточно прочны (т. е. если площади комплементарных поверхностей субъединиц достаточно велики, а сами поверхности высококомплементарны), то могут образовываться чрезвычайно прочные структуры из микротрубочек (например, жгутики у эукариот, рис. 1-5). Когда взаимодействия не столь сильны, то образуются часто обнаруживаемые в клетках лабильные структуры из микротрубочек, которые возникают и вновь распадаются. [c.273]

    Последовательности реакций, показанные в уравнениях (7-29) и (7-30), представляют собой общий механизм, используемый клетками для присоединения карбоновых кислот к—ОН",—SH-и—МНа-группам. Например, последовательность реакций (7-30) используется при образовании молекул аминоацил-тРНК, необходимых для синтеза белков. Механизм этих реакций показан в табл. 7-2. В зависимости от типа образующегося соединения (тиоэфир, сложный эфир или амид) реакции обозначены как S1A, S1B или SI . Символы а и y указывают, в каком месте происходит расщепление АТР при Р или при Pv Например, образование ацетил-СоА у эукариотов протекает по механизму SlA(a). Понятно, что эта последовательность включает гидролиз неорганического пирофосфата (Pi i) до неорганического фосфата (Pi), роль которого в сопряжении реакции расщепления АТР с биосинтезом рассмотрена ниже (гл. 11, разд. Б,2). [c.135]

    Молекула как 16S РНК прокариот, так и 1SS РНК эукариот может быть подразделена на 3 главных домена 5 -концевой (домен I), ограниченный и скрепленный черешковой спиралью из 10—11 нуклеотидных пар (спираль 2, обркзованная последовательностями 27— 37 и 547—556 в случае 16S РНК Е. соП, см. рис. 42) серединный (домен II), имеюший черешок из 7 нуклеотидных пар (спираль 22, образованная последовательностями 564—570 и 880— 886 у Е. соИ) 3 -проксимальный (домен III), ограничен- [c.85]

    Детальное исследование молекулярной организации генома высших эукариот, особенно млекопитающих, показало, что существенная часть генома, около 10 % общей массы ДНК, образовалась в результате интеграции в геном фрагментов ДНК, синтезирован-лых на РНК-матрицах в результате обратной транскрипции (рис. 118, а). Впервые подобный процесс был описан при исследовании ретровирусов, в геноме которых имеется ген, кодирующий обратную транскриптазу (ревертазу) (см. гл. ХИ1). В геноме млекопитающих, птиц, амфибий и насекомых обнаруживаются ретропо-зоны, представляющие собой внедрившиеся в геном ДНК-копии, синтезированные на разных типах клеточных РНК как на матрицах. Молекулярные механизмы ретропозиции не изучены, остается не установленным источник клеточной обратной транскриптазы. Не ясно, что служит затравкой для ревертазы возможно, это шпилька на З -конце РНК, образующаяся в результате комплементарных взаимодействий. Как будет видно, структура ретропозонов позволяет с уверенностью говорить об участии обратной транскрипции в процессе их образования. Таким образом, наряду с переносом информации от ДНК к РНК осуществляется и обратный процесс — возвращение ее в геном в виде ретропозонов. У млекопитающих ретропозоны составляют более 10 % ДНК следовательно, мощность встречного потока информации от РНК к ДНК может быть существенной, по крайней мере при оценке его во временном эволюционном масштабе. Различают разные типы ретропозонов. [c.222]

    Процессинг первичных транскриптов. Процессинг первичных транскриптов 5У40 включает те же реакции, что и процессинг большинства ядерных пре-мРНК эукариот кэпирование 5 -конца, полиаденилирование З -конца и сплайсинг. Все эти реакции в случае 5 / 40 осуществляются клеточными ферментами и при помощи тех же механизмов, которые реализуются в незараженной клетке. Остановимся здесь лишь на сплайсинге, точнее, на его значении для образования индивидуальных мРНК в связи с особенностями организации кодирующих последовательностей в вирусном геноме. [c.302]


Смотреть страницы где упоминается термин РНК эукариот, образование: [c.184]    [c.222]    [c.225]    [c.302]    [c.308]    [c.308]    [c.318]    [c.324]    [c.332]    [c.163]    [c.278]    [c.297]    [c.485]    [c.634]    [c.184]    [c.225]    [c.308]    [c.308]    [c.318]    [c.324]   
Основы генетической инженерии (2002) -- [ c.32 , c.33 , c.34 , c.35 ]




ПОИСК







© 2025 chem21.info Реклама на сайте