Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Мембрана молекулярная организация

Рис. 15. Схема молекулярной организации и функциоиироваиия внут> реиией мембраны митохондрий. Пояснения в тексте- Рис. 15. <a href="/info/219056">Схема молекулярной</a> организации и функциоиироваиия внут> реиией <a href="/info/101342">мембраны митохондрий</a>. Пояснения в тексте-

    В молекулярной организации клеток существует структурная иерархия. Клетки содержат органеллы, такие, как ядро и митохондрии, которые в свою очередь содержат надмолекулярные структуры, например мембраны и рибосомы, а эти последние представляют собой группу объединенных между собой макромолекул, связанных друг с другом с помощью многочисленных относительно слабых межмолекулярных связей. В макромолекулах отдельные строительные блоки соединены друг с другом ковалентными связями. [c.76]

    Мембраны бактерий. Протопласт снаружи окружает цитоплазматическая мембрана — плазмалемма, прилегающая непосредственно к оболочке. Мембраны составляют 40—90% всей массы клетки. Длительно существовало ошибочное представление, что периферическая плазмалемма бактериального протопласта является единственной мембранной структурой бактериальной клетки. Сейчас известно, что периферическая мембрана образует инвагинации, составляющие внутриклеточные мембранные структуры. Различными методами показано, что мембраны трехслойные и достигают 8,5 нм в толщину. У всех исследованных бактерий мембраны могут быть причислены к обязательным компонентам бактериальной клетки [63, 126]. В. И. Бирюзовой [23] собрана большая литература о молекулярной организации плазмалеммы. Ее наружная поверхность, обращенная к клеточной оболочке, состоит из субъединиц грибовидной формы с размером головки 8—12 нм. Часть этих субъединиц, по-видимому, является ферментативными белками, другая часть — белково-липидными структурами. [c.25]

    Проблемы, связанные с молекулярными основами превращений химической энергии АТФ в механическую энергию процессов сокращения и движения, чрезвычайно сложны [3, 15]. Это объясняется тем, что вне живого организма отсутствуют примеры непосредственного превращения химической энергии в механическую. Механическая работа может быть представлена сокращением мышц, а также движениями ресничек и жгутиков у простейших. Большинство клеток содержат сократительные нити (фибриллы), которые осуществляют организацию содержимого клетки, движение и перенос клеточных веществ, процессы клеточного деления и т. д. В качестве примера преобразования энергии АТФ в механическую работу можно привести процессы мышечного сокращения, связанные с использованием энергии АТФ [3, 15, 18], при этом важную функцию выполняют белковые компоненты мышечных клеток — комплекс миозина и актина, названный актомиозином. Актомиозин и его компонент миозин обладают АТФ-азной активностью, т. е. способны гидролизовать концевую фосфатную группу АТФ. Однако АТФ-азную активность актомиозина стимулируют ионы Mg +, а миозина — ионы Са +. Сигналом для сокращения мышц является электрический импульс, приходящий из двигательного нерва через нервномышечное соединение. До получения импульса по обе стороны мембраны (сарколемма) мышечной клетки поддерживается, разность потенциалов (с наружной стороны имеется избыточный положительный заряд). При распространении импульса по мембране разность потенциалов сразу исчезает. Считают, что это является результатом резкого повышения проницаемости мембраны для ионов К+, Na+ и Са2+ при этом направление потоков ионов вызывает разряд трансмембранного потенциала. После этого мембрана вновь возвращается в поляризованное состояние, а ионы Са + входят внутрь саркоплазматической сети мышечной клетки. Подобный перенос ионов Са + осуществляется за счет свободной энергии гидролиза АТФ (АТФ-азный кальциевый насос мембраны). Поставщиками АТФ в мышечных клетках служат как гликолиз, так и дыхание. Однако при нарушении этих процессов мышца (скелетная мышца позвоночных животных) при стимуляции продолжает сокращаться благодаря тому, что в ней содержится богатое энергией вещество — креатинфосфат (см. стр. 416), концентрация которого более чем в 4 раза превышает концентрацию АТФ. В мышце идет реакция  [c.430]


    ЦПМ является основным барьером, обеспечивающим избирательное поступление в клетку и выход из нее разнообразных веществ и ионов Осуществляется это с помощью разных механизмов мембранного транспорта. Молекулы воды, некоторых газов (таких, как О2, Н2, N2) и углеводородов, концентрации которых во внешней среде выше, чем в клетке, проходят через ЦПМ внутрь клетки посредством пассивной диффузии. Движущей силой этого процесса служит градиент концентрации вещества по обе стороны мембраны. Основным соединением, поступающим в клетку и покидающим ее таким путем, является вода. Движение воды через мембрану, подчиняющееся законам пассивной диффузии, привело к выводу о существовании в мембране пор. Эти поры пока что не удалось увидеть в электронный микроскоп, но некоторые данные о них были получены косвенными методами. Расчетным путем установлено, что поры должны быть очень мелкими и занимать небольшую часть поверхности ЦПМ. Высказывается предположение, что они не являются стабильными структурными образованиями, а возникают в результате временных перестроек молекулярной организации мембраны. [c.43]

    Таким образом, мембраны клеток представляют собой очень сложные структуры составляющие их молекулярные комплексы образуют упорядоченную двумерную мозаику, и это придает поверхности мембран биологическую специфичность. Молекулярная организация клеточных мембран-один из наиболее актуальных предметов исследования в современной клеточной биологии и биохимии. [c.350]

    Электромеханическая модель позволяет дать простое объяснение сильной нелинейности вольтамперных характеристик мембран (см. гл. XIX). Однако в модели рассматривают поведение мембраны как единого однородного тела без учета возможных локальных изменений молекулярной организации липидного бислоя. Кроме того, экспериментальные данные дают существенно более низкое критическое уменьшение (до 20%) толщины мембраны при коллапсе по сравнению с моделью. В настоящее время интенсивно развиваются представления, согласно которым пробой мембран под действием электрического поля обусловлен особенностями поведения локальных дефектов типа сквозной поры в липидном бислое. [c.30]

    В основе молекулярной организации мембран лежит способность липидов образовывать прочные мономолекулярные слои. Почти 50 лет назад было высказано предположение, что в основе мембран лежит бимолекулярный слой липидов. С тех пор было предложено множество различных моделей структуры мембраны, что отражено на рис. 9. Все предложенные модели ос-тавлязот неоспоримой белково-липидную природу мембран. Несмотря на большое число вариантов, представленные модели могут быть сведены к трем основным типам. [c.77]

    Молекулярная организация ганглиозидов в мембране очень динамична, что создает, с одной стороны, некоторую локальную неустойчивость мембраны, а с другой - поддерживает ее целостность. Молекулы ганглиозидов не подвержены флип-флопу, но способны к латеральной диффузии с широко варьирующей скоростью. [c.126]

    Объектом для изучения биологических систем с применением < пин-меток были главным образом модельные мембраны, а также биологические мембраны и белки. Исследования мембран были сконцентрированы на изучении их молекулярной организации, общих представлений о текучести мембран и фазовых перестроек или фа- [c.304]

    Влияние продольной диффузии (молекулярной или кнудсеновской, в зависимости от размера пор) в порах подложки тем больше, чем больше проницаемость компонентов через селективный слой мембраны и коэффициент деления потока 0. При этом увеличивается (или уменьшается, в зависимости от организации потоков) разность между концентрациями распределяемого компонента на границе селективного и пористого слоев мембраны у и содержанием этого компонента внутри полого волокна Уа. При противотоке концентрация у на границе селек- [c.181]

    В реальных условиях не только природные, но часто и искусственные мембраны суш ественно неоднородны по липидному или белковому составу. В структурной организации стабилизации таких систем наряду с обычными гидрофобными эффектами важное место занимают так называемые липид-белковые и белок-белковые взаимодействия. Эти термины используют для обозначения широкого круга разнообразных, отличаюш ихся по механизмам явлений, которые приводят к неравномерному распределению молекулярных компонентов в мембранах — микрогетерогенности мембран. [c.57]

    Мы можем теперь обобщить наш обзор процессов, происходящих на рецепторном уровне (см. табл. 11.2). В передаче информации из области сенсорного стимула в область импульсного разряда мы видели четыре стадии (преобразование, генерацию рецепторного потенциала, его электротоническое распространение, генерацию импульса). Мы видели также, как. рецептор определяет основные свойства сенсорного ответа. Таким образом, специфичность сосредоточена в молекулярных механизмах чувствительной мембраны. Кодирование интенсивности связано с преобразованием градуальных рецепторных, потенциалов в частотный импульсный код. Адаптация определяет профиль ответа в зависимости от временной размерности часто имеется тенденция повышения чувствительности к изменению стимула. Распределение всей популяции рецепторов определяет, как мы вскоре покажем, пространственную организацию поступающей информации. [c.275]


    Базальную мембрану синтезируют сами лежащие на ней клетки (рис. 12-67 и 12-68). Хотя состав ее в деталях варьирует от ткани к ткани и даже от участка к участку в пределах одной мембраны, одним из главных компонентов всегда бывает коллаген типа IV. Про-а-цепи этого типа необычны в том отношении, что у них очень длинные концевые пептиды, которые, вероятно, не отщепляются и после выхода молекул из клетки. Поэтому такие молекулы проколлагена не образуют типичных коллагеновых фибрилл, хотя и соединяются ковалентными сшивками. Наряду с протеогликанами и фибронектином важным компонентом всех до сих пор изученных базальных мембран оказался гликопротеин ламинин, состоящий по меньшей мере из двух субъединиц (мол. масса 220 000 и 440 000 дальтон), соединенных дисульфидными связями (рис. 12-69). Несомненно, базальные мембраны содержат и много других, еще не идентифицированных, белков. Молекулярная организация базальных мембран детально не изучена, но некоторые данные указывают на то, что ламинин и протеогликаны сосредоточены у внутренней и наружной поверхностей мембраны, а молекулы коллагена находятся в ее феднем слое. [c.239]

    Для понимания молекулярной организации мембраны миелина критическим является изучение коротко- и длиннорадиусных взаимодействий между белками и липидами. Несомненно, что изменение структуры белков или липидов ведет к изменению такого рода взаимодействий и приводит к нестабильности миелина, в том числе к демиелинизации. [c.119]

    Л. Н. Чекалов с сотр. [16] проанализировали влияние организации потоков в модуле плоскопараллельного типа на эффективность разделения. Они оценили влияние параметра С = = ехр(—18о/гО) при разделении воздуха с помощью модуля на основе асимметричной мембраны из поливинилтриметилсилана (ПВТМС) и пористой подложки из поливинилхлорида (ми-пласт) при перепаде давлений на мембране Ар 0,1 МПа. Коэффициент диффузии в пористом слое в первом приближении принимали равным коэффициенту молекулярной диффузии [c.182]

    АТФазы, выделенные из различных эукариотических и бактериальных клеток, представляют собой сложные мембраиосая-занные комплексы и имеют весьма сходную структурную организацию (рис. 334). Их молекулярные массы равны примерно 450 ООО—500 ООО. Молекулы этих ферментоа состоят из даух частей водорастворимой каталитической части (F ), которая, диссоциируя с мембраны, может функционировать только как АТФаза, но не как АТФ-синтетаза. и мембранного сектора (Fu), обладающего протон-транслоцирующей активностью. Обе части имеют сложный субъеднничный состаа. Только полный F Рп-комплекс способен осуществлять реакции преобразования энергии, т. е. ре- [c.619]

    Как же нам теперь отвечать на вопрос, поставленный выше (см. стр. 214) Объяснять ли бесструктурность интерфазного ядра использованием неподходящих фиксирующих средств или же отсутствием эквивалентных упорядоченных структур Конечно, первую возможность нельзя исключить полностью быть может, и в самом деле в один прекрасный день будет найдено настоящее средство для фиксации ядра. Однако надежд на это, пожалуй, маловато. Ведь в конце концов вот уже 30 лет, как известны очень и очень хорошие средства для фиксации всех прочих составных частей клетки. Гораздо более обосновано второе предположение, согласно которому постоянное отсутствие структурной организации, видимой в электронный микроскоп, объясняется тем, что упорядоченность генетической информации на молекулярном уровне реализуется в последовательности нуклеотидов или соответственно их триплетов. Эта упорядоченность здесь настолько строга, что наслоение более крупных (а значит, и более грубых) структур, таких, как пластинки (или ламеллы), мембраны и им подобные, излишне (а потому и отсутствует). [c.216]

    Ядерное вещество представляет собой нуклеоид. В отличие от эукариотической клетки ДНК бактериальной клетки не связана с гистонами и не отделена от цитоплазмы ядерной мембраной. Фибриллы бактериальной ДНК достаточно правильно ориентированы, поэтому ядерное вещество мо жно представить как образование, расположенное вдоль большего габарита клетки и имеющее толщину около 3—4 нм, но конфигурация нуклеои-да очень изменчива. ДНК —обособленный элемент, никогда не смешивающийся с цитоплазмой, в старых клетках ДНК упакована более компактно. Предполагают, что весь геном бактериальной клетки представлен одной гигантской замкнутой молекулой ДНК, с молекулярной массой 7 10 . Ее вполне можно расценивать как бактериальную хромосому. Но все же следует помнить, что ДНК бактерий упакованы менее плотно, чем в ядре эукариотической клетки, в ядерном веществе отсутствует мембрана, не найдены ядрышко и набор хромосом, ДНК не связана с основными белками — гистонами. Все это свидетельствует об эволюционно более примитивной форме организации ядерного вещества у прокариотов. Многие бактерии имеют капсулу или дополнительные внешние структуры жгутики, фимбрии, структурные тяжи. [c.33]

    Биологическая активность, и особенно специфичность многих биохимических процессов, требует соответствующей структурной организации. Агрегация обеспечивает один из уровней организации молекул, причем эта организация обратима. Переход мономер -мицелла может быть в организме одним из регулирующих механизмов. Действительно, равновесие между бислойными ламелями и мицеллами в биологических мембранах, постулированное Люси и сотр. [3], широко принято как способ регуляции свойств мембраны. Для изучения мембран в биологии были затрачены огромные усилия, но контролирующие механизмы организма, не связанные с мембранами, исследованы недостаточно. Механизм биологической активности, как правило, понятен на фармакологическом или био-хитческом уровне, в то время как молекулярная природа актав-ности остаетсч неясной. В наших знаниях существует значитель— [c.43]

    Существуют значительные различия между окружением агрегатов жирных кислот в биомембранах и простых мицеллах, которые, можно думать, впияют и на протекание химических реакций. Значительно отличаются радиусы кривизны, что может оказать существенное влияние на взаимодействия соседних молекул. Мембраны состоят не только из молекул липидов, они содержат также липо— фильные белки и стероиды. Однако мицеллы также создают углеводородное микроокружение, имеющее определенную степень молекулярной упорядоченности, и в то же время в таких системах довольно велико отношение поверхности к объему, существенное для контакта водной фазы и образующихся радикалов. Хотя радиационное окисление в чистых растворах жирных кислот ранее также исследовали, может возникнуть вопрос относительно однородности оксигенации растворов. В мицеллярных растворах, однако, установление равновесия для О 2 протекает полностью и быстро [Ц]. В данной работе для исследования роли организации и геометрии молекул использовали модельные мицеллярные системы, образованные мылами линолевой, линоленовой и арахидоновой кислот. Авторы считали, что существует взаимосвязь между образованием сопряженных [c.329]

    Попятно, что ira каждом уровне дробления решающим могут оказаться данные разных разделов биологии или (и) психологии. Например, для построения феноменологических моделей сенсорных систем основу представляли сведения из психофизики. Для более подробных моделей, включающих представления о характере iij)e-образований в составляющих систему нейронных ядрах, необходимы результаты электрофизиологических исследований этих ядер. Но чтобы приблизиться к пониманию механиз.мов передачи и переработки информации — носителями которой являются потоки нервных импульсов,— требуются модельные представления на нейронном уровне, т. е. на уровне иггформационных преобразований Б нервных клетках и организации взаимодействия между ними. Наиболее детальная. модель предполагает понимание по крайней мере характера н])еобразований в тех элементах нейрона, которые по сои-ременпым воззрения.м определяют переработку информации,— это мембрана клетки, сома, дендриты, синапсы. Здесь уже нужны данные не только физиологии и морфологии нервной клетки, но и результаты моделирования но существу молекулярных процессов в мембране. Примечательно, что здесь начинается и разделение сфер исследования. Для тех кто моделирует информационную сторону процессов в нервной системе, приближается момент, когда достаточно ограничиться феноменологическими сведениями о более мелких элементах (посчитать их за черные ящики ). Вместе с тем здесь начинается сфера интересов биохимии и молекулярной биологии, данные которых как бы поддерживают снизу весь этот комплекс информационных исследований нервных процессов, помогая установить свойство наиболее ма.чых элементов, влияющих на специфику оперативной переработки нервной информации. [c.10]

    Белок полосы III из мембраны эритроцитов человека представляет собой трансмембранный белок с молекулярной массой около 100 кДа (примерно 800 аминокислотных остатков). Это транспортный белок, две молекулы которого образуют анионный канал для ионов СГ и НСО3, пассивно перетекающих через мембрану в соответствии с градиентами их концентраций [242-244]. Полипептидная цепь белка в а-спиральной конформации несколько раз пронизывает бислой около трети его цепи с N-конца помещена в цитоплазму, а короткий С-концевой участок расположен во внеклеточном пространстве (рис. 1.6). Для того чтобы понять механизм функционирования транспортного белка полосы III, как и механизмы действия других мембранных белков, необходимо знать трехмерную структуру молекулы в условиях липидного бислоя. Для получения такой информации требуется, на первый взгляд, почти невозможное. Во-первых, необходимо отделить трансмембранный белок от липидов и других мембранных белков, не повредив его молекулярной трехмерной структуры, что очень трудно. Во-вторых, из выделенных белковых молекул следует получить, не нарушив их пластической, легко деформирующейся при изменении внешних условий структурной организации, высокоупорядоченный монокристалл требуе-мых размеров, что не всегда удается даже в случае водорастворимых [c.58]

    Необходимо отметить, что в хемиосмотической концепции и ее модификациях имеется ряд неясных моментов, связанных в первую очередь с физическими механизмами переноса зарядов. Например, перенос электронов, по Митчеллу, совершается по системам цитохромов и других негемовых белков, однако, физические механизмы этого процесса не уточняются [89]. При построении различных схем структура многих белков существенно искажается, и не учитываются особенности их надмолекулярной организации, в частности, симметрия в расположении олигомеров [89,92]. В то же время, путь протонов, согласно Митчеллу, проходит вдоль мембраны по водной физиологической среде [89], что критикуется многими исследователями [139, 141]. Важно отметить также, что в схемах Митчелла и его последователей пути электронов и протонов (отметим, что пути эти различны), прокладываются на пустой структуре белков и мембран. А ведь к настоящему времени надмолекулярная организация многих мембранных белков, в том числе цитохромов, известна достаточно подробно [116, 128]. Отсутствие тесной связи между хемиосмотической концепцией, механизмами переноса зарядов и структурной организацией белков и вообще биомембран является, на наш взляд, существенным недостатком данной концепции. Само представление о мембранном потенциале является бесструктурным и по сутй — лишь отражением физических процессов, происходящих на молекулярном уровне, сущность которых в данной концепции остается не вскрытой. [c.41]

    Мембранология — современная, стремительно развивающаяся междисциплинарная область естественных наук, находящаяся на стыке биофизики, биохимии, молекулярной биологии, иммунологии, физиологии, генетики, физической и коллоидной химии и др. Она изучает состав, структуру, свойства, функции, локализацию компонентов биологических мембран, их молекулярную и динамическую организацию, особенности межмоле-кулярных взаимодействий и фазовые переходы липидов и белков в мембране, транспорт веществ через мембраны, участие биомембран в осуществлении и регулировании метаболических процессов в клетке, механизмы действия различных физико-химических факторов на мембранные системы и другие вопросы, связанные с исследованием состояния компонентов биомембран и отдельных клеток. [c.7]

    Поверхность клетки играет решающую роль в осуществлении определенных клеточных функций, включая иммунный ответ. Но, несмотря на это, наши знания о структурной организации биологических мембран и о механизме биохимических реакций, которые в них протекают, к сожалению, очень скудны. Для накопления информации в этой области мы должны прежде всего разделить мембраны на определенные субъединицы. При фракционировании мембранных белков и гликопротендов обычными биохимическими методами возникали трудности из-за того, что приходится одновременно очищать много разных белков, имеющих сходные молекулярные размеры или заряд. Применение моноспецифических сывороток для очистки антигенов клеточной поверхности помогает обойти эти препятствия, однако сложность получения таких сывороток ограничивает возможности их использования. [c.68]


Смотреть страницы где упоминается термин Мембрана молекулярная организация: [c.222]    [c.303]    [c.26]    [c.29]    [c.102]    [c.508]    [c.99]    [c.508]    [c.217]    [c.79]    [c.17]    [c.291]    [c.200]    [c.410]    [c.274]    [c.205]    [c.291]    [c.7]    [c.36]   
Химия биологически активных природных соединений (1976) -- [ c.375 ]




ПОИСК







© 2024 chem21.info Реклама на сайте