Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Вольтамперометрия обратимая электродная реакция

    Работа 14. Определение содержания хинонов методом циклической вольтамперометрии. Оценка обратимости электродной реакции [c.300]

    Важная разновидность вольтамперометрии с линейной разверткой— циклическая вольтамперометрия с треугольной разверткой потенциала. Если в первом случае электрод поляризует единичным импульсом линейно изменяющегося потенциала, то во втором на электрод подают серию импульсов поляризации, линейно изменяющейся сначала в катодном, а затем в анодном направлении. График изменения потенциала во времени имеет вид равнобедренного треугольника и потенциал электрода как бы качается между заданными начальным и конечным значениями. В случае обратимой электродной реакции, вещество, восстановившееся в ходе катодной поляризации, в силу быстроты изменения потенциала не успевает за счет диффузионного переноса покинуть приэлектродный слой и обратно окисляется в ходе второй части цикла — анодной поляризации электрода. Полярограмма приобретает вид двух равных пиков токов разной полярности (см. рис. 5.16), сдвинутых относительно друг друга на 57 мВ. Если продукт реакции нестабилен, то анодный ток равен нулю. Это является хорошим методом выяснения природы электродной реакции. [c.289]


    Она является функцией тока чем выше плотность тока, тем больше значение поляризации. Если потенциал становится более отрицательным, поляризацию называют катодной, если более положительным — анодной. Возникновение поляризации обусловлено замедлением электродного процесса. Можно считать установленным тот факт, что в основе зависимостей ф —/ и Дф —/ лежат кинетические закономерности, характерные для данной электродной реакции. Методы изучения особенностей поляризационных кривых потенциал — плотность тока называют вольтамперометрией. Любой электродный процесс представляет собой сложную гетерогенную реакцию, состоящую из ряда последовательных стадий. Скорость многостадийной реакции определяется скоростью наиболее медленной стадии. Это представление справедливо и для электрохимической реакции. Возникновение электродной поляризации связано поэтому непосредственно с той стадией, которая определяет скорость всего процесса. Если изменить ход процесса, т. е. увеличить его скорость, то и налагаемое напряжение может уменьшиться и стать меньше обратимого потенциала. Уменьшение электродного потенциала по сравнению с обратимым и процесс, обусловливающий его, называют деполяризацией. Значение поляризационных и деполяризационных явлений при практическом использовании неравновесных электрохимических систем велико. Потенциалы поляризованных электродов определяют напряжение электрохимической цепи, а следовательно, и напряжение на клеммах химического источника тока, т. е. определяют энергетические затраты. Поэтому особенно важен выбор оптимальных условий проведения электрохимического процесса. [c.203]

    Как известно, обратимость электрохимической стадии, о которой в методе циклической вольтамперометрии судят по форме и положению анодно-катодных пиков, принадлежащих какой-либо окислительно-восстановительной паре, зависит от условий электролиза, т. е. эксперимента [68]. Если один из компонентов редокс-пары является неустойчивой частицей, то для наблюдения за обоими пиками подбирают соответствующую скорость изменения потенциала или время электролиза. Если электродная реакция контролируется одновременно диффузией и переносом заряда, то разность потенциалов анодного и катодного пиков АЕр зависит от степени обратимости процесса, т. е. от отношения скоростей переноса электрона и развертки потенциала поляризации электрода. Если скорость электрохимической стадии велика, а величина V относительно мала, то процесс обратим и АЕр равно 58/и мв. В противном случае электрохимическая стадия необратима, и разность потенциалов анодно-катодных пиков превышает эту тео- [c.33]


    Влияние электродных процессов этого типа при аналитическом использовании вольтамперометрии с линейной разверткой напряжения, переменнотоковой полярографии и других методов, Б общем, гораздо более сильное, чем в постояннотоковой полярографии. В некоторых полярографических методах высота пика, используемая при построении аналитической калибровочной кривой является функцией константы скорости (в отличие от предельного тока в постояннотоковой полярографии), и поэтому приходится принимать некоторые меры предосторожности. В самом деле, в таких случаях, чтобы добиться наилучшей аналитической методики, следует попытаться либо уменьшить временную шкалу эксперимента, чтобы избежать влияния скорости химической реакции, либо увеличить временную шкалу, чтобы достигнуть равновесия химической реакции. В любом из этих предельных случаев волны становятся обратимыми (при условии, что перенос зарядов обратим) и аналитическая методика упрощается. Обсуждение этой области будет существенно углублено при рассмотрении особенностей разных полярографических методов. [c.37]

    Применяя первый и второй законы диффузии Фика, Олдхэм легко на шел и табулировал значения р. Эти результаты приведены в табл. 3. В случае потенциостатических методов, включая вольтамперометрию с линейной развертк( потенциала, для определения величины р не обходимо дополнительно предполагать существенную обратимость электродной реакции, т.е. считать диффузию лимитирующей стадией. Из табл. 3 очевидно, что все методы с контролируемым потенциалом дают четные порядки, в то время как методы с контролируемым то ком дают нечетные порядки. [c.164]

    Вторую группу методов составляют хроновольтамперомет-рические методы, характеризующиеся быстрым изменением воздействующего сигнала в виде линейного или линейно-ступенча-того изменения электродного потенциала со скоростями от долей вольта до сотни и более вольт в секунду. При этом регистрируется динамическая вольт-амперная характеристика датчика, а фарадеевский сигнал для обратимой электрохимической реакции имеет форму полупроизводной полярографической волны (рис. 9.1, в). Изменение потенциала может быть реверсивным (катодноанодным) в виде симметрично-треугольной или трапецеидальной однократной или многократной развертки потенциала циклическая вольтамперометрия). Линейно-ступенчатая развертка потенциала позволяет использовать временную селекцию фарадеевского тока в конце каждой ступени. [c.319]


Аналитическая химия Том 2 (2004) -- [ c.421 ]




ПОИСК





Смотрите так же термины и статьи:

Вольтамперометрия

Обратимость реакций

Определение содержания хинонов методом циклической вольтамперометрии. Оценка обратимости электродной реакции

Реакции обратимые

Электродные обратимость

Электродные обратимые

Электродные реакции



© 2024 chem21.info Реклама на сайте