Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Электродные обратимость

    Для второго из выбранных объектов, т. е. для железа, стандартный электродный потенциал равен —0,44 В. Поэтому здесь, так же как и в случае цинка, следует считаться с реакцией выделения водорода, и, следовательно, условия стационарности будут заданы уравнением (24.2). Однако в отличие от цинка здесь совершенно иное соотношение токов обмена металла и водорода. Ток обмена железа имеет порядок 10 з А-см- , а для водорода на железном электроде в кислых растворах он достигает А-см 2. Можно ожидать поэтому, что стационарный потенциал железа в условиях кислотной коррозии должен заметно отличаться от его обратимого потенциала он будет смещен в сторону положительных значений, г. е. в направлении равновесного потенциала водородного электрода. Этот вывод согласуется с экспериментальными данными и находит дополнительное подтверждение в том, что железо ведет себя в некоторых интервалах pH подобно водородному электроду. Скорость коррозии железа также можно вычислить, если только известны его стационарный потенциал и перенапряжение водорода на нем. [c.493]


    Электроды этого типа обратимы как относительно катиона (например, Ag+), так и относительно аниона (С1"). Здесь можно регулировать концентрацию С1" и только таким образом влиять на концентрацию Ag , а следовательно, и на электродный потенциал, используя уравнение Нернста. Таким образом, эти электроды практически являются электродами второго рода. [c.550]

    Таким образом, потенциал электрода второго рода определяется активностью анионов труднорастворимого соединения электродного металла. Электроды второго рода обратимы, однако, и по отношению к катионам электродного металла, поскольку их активности и активности анионов труднорастворимого соединения нахо- [c.162]

    Таким образом, измерение э.д.с. электрохимических элементов и цепей является простым и точным методом вычисления термодинамических характеристик химических реакций и некоторых важных физико-химических процессов в растворах. Этим методом можно пользоваться, безусловно, только в тех случаях, когда интересующий исследователя процесс можно осуществить обратимо в электрохимическом элементе, разбив процесс на две части, соответствующие двум обратимым электродным процессам. [c.530]

    Из химической кинетики известно, что скорость последовательной реакции определяется скоростью наиболее медленной из ее последовательных стадий, а из ряда параллельных путей наиболее вероятен путь с наименьшими торможениями. Эти же представления справедливы в случае электрохимических процессов. Возникновение электродной поляризации связано поэтому непосредственно с той стадией, которая определяет скорость всего процесса, т. е. с наиболее замедленной стадией. Появление нового пути, обеспечивающего протекание реакции с большей скоростью, способно снижать электродный потенциал, который в отдельных случаях, например при изменении характера электродного процесса, может оказаться даже меньшим, чем обратимый потенциал. Это уменьшение электродного потенциала и процесс, обусловливающий его, называется деполяризацией. [c.292]

    Для решения вопроса, является ли потенциал данного металла в каком-либо электролите обратимым или необратимым, следует сопоставить теоретическое, рассчитанное по уравнению (277), и опытное значение электродного потенциала металла, равно как [c.179]

    Во всех конструкциях натриевых электродов сравнения, чтобы предотвратить взаимодействие натрия с расплавленными солями, используют промежуточные твердые электролиты, преимущественно стекло. Применяя стеклян-но-натриевый электрод сравнения Na I Стекло . Расплав, содержащий ионы Na" , измеряют электродные потенциалы в расплавленных солях, а затем, пользуясь соответствующими калибровочными кривыми, пересчитывают их относительно стандартного натриевого электрода, обратимый потенциал которого [c.173]


    Таким образом, работа электрического тока в концентрационных цепях — это работа диффузионного процесса, который проводится обратимо путем разделения его на несколько (в нашем случае — четыре) различных по направлению обратимых электродных процессов, каждый из которых связан с опреде- [c.563]

    Так как частные токи /л и /к одинаковы, то в условиях установившегося равновесия заряд металл.з по отношению к раствору, а следовательно, и потенциал электрода ие являются функцией времени они определяются лишь составом системы, ее температурой и давлением. Потенциал электрода в этих условиях называется обратимым или равновесным электродным потенциалом. Величину равновесного электродного потенциала (в условной шкале) можно вычислить при помощи общих термодинамических уравнений, если только известны электродная реакция, активности участвуюш,их в ней веществ, температура и давление. Э.д.с. равновесной электрохимической системы определяется при этом изме-иенпем термодинамического потенциала протекающей в ней реакции. [c.277]

    В предыдущих главах были рассмотрены равнове ные состояния процессов внутри электролитов с участием ионов (электролитическая диссоциация, гидролиз, сольватация и т. д.) и процессов на электродах (электрохимические реакции и характеризующие их параметры — обратимые электродные потенциалы). Эти состояния не зависят от времени, к ним применимы оба основных закона термодинамики. Поэтому соответствующие закономерности называются термодинамическими, а раздел электрохимии, посвященный им, — термодинамикой электрохимических процессов. Для электродных процессов равнопесие характеризуется отсутствием электрического тока. [c.605]

    Е - стандартный электродный обратимый потенциал относительно электрода сравнения [c.274]

    При замедленной рекомбинации для протекания реакции выделения водорода с заданной скоростью на поверхности металла необходим избыток водородных атомов по сравнению с равновесными условиями. При равновесии, т. е. при обратимом значении потенциала водородного электрода, между всеми стадиями электродной реакции существует детальное равновесие  [c.408]

    Таким образом, еслн электрод расположен в ряду стандартных электродных потенциалов между ]юдородным и кислородным электродами, то при его контакте с ра твором разложение воды с выделением водорода будет термодинамически невероятно. Однако остается еще возможной реакция восстановления кислорода, поэтому такой электрод должен быть термодинамически неустойчив в присутствии В0Д1Л и воздуха. Если ке водный раствор обезгазить и воздух над ним заменить инертной атмосферой, тогда восстановление кислорода будет исключено и электрод станет термодинамически устойчивым. В этих условия к можно реализоват ) обратимый потенциал электрода и измерить его относительно соответствующего электрода с[)авиеиия. [c.186]

    Электродная обратимая реакция [c.266]

    Прохождение электрического тока через электрохимическую систему связано ке только с соответствующими химическими превращениями, но и с изменением ее электрических характеристик, прежде всего э.д.с. и электродных потенциалов, ио сравиенпю с их исходными значениями в отсутствие тока. При этом если электрохимическая система является электролизером (электролитической ванной), то напряжение на ней при данной силе тока будет больше обратимой э.д.с. той же системы E (j)>E, и наоборот, если электрохимическая система генерирует ток, т. е. является химическим источником тока — гальваническим элементом или аккумулятором, то его внешнее напряжение будет меньше, чем э.д.с. Еа 1)<Е. [c.287]

    Поскольку экспериментально можно измерить лишь величину э. д. с, электрохимической цепи, то опытным путем можно определить только относительные величины так называемых электродных потенциалов, т. е. э. д. с. цепи, составленной из данного электрода и некоторого стандартного электрода, потенциал которого условно принимают равным нулю. Таким стандартным электродом, или электродом сравнения, является обратимый водородный электрод, в котором газообразный водород находится при давлении I атм и насыщает платиновый электрод. Раствор, в который погружен водородный электрод, содержит ионы водорода (гидроксония), причем активность Н+ равна единице. [c.542]

    Однако сдвиг потенциала от обратимой величины является здесь следствием чисто концентрационных изменений и поэтому значение потенциала электрода под током можно рассматривать как новое значение равновесного потенциала ё, отличающееся от исходного ё только тем, что оно отвечает теперь другим значениям концентрации или, точнее, активпости участников электродной реакции. Иными словами, для описания диффузионного перенапряжения как явления квазиравновесного можно использовать чисто термодинамический метод. В таком случае существенными являются лишь начальное и конечное состояния системы, а пути перехода между ними, равно как и механизм, лежащий в основе этого перехода, не имеют значения. Пусть на г лектроде протекает реакция [c.299]

    ОБРАТИМЫЕ ЭЛЕКТРОДНЫЕ ПОТЕНЦИАЛЫ [c.170]

    Строение двойного электрического слоя не имеет значения для величины обратимого электродного потенциала, которая определяется изменением изобарно-изотермического потенциала соответствующей электрохимической реакции. В то же время строение двойного электрического слоя играет важную роль в кинетике электродных процессов, в том числе и в кинетике обмена ионами в равновесных условиях, характеризуя интенсивность этого обмена (величину тока обмена о). [c.157]


    Параллельно изложенному выводу э.д.с. цепи без переноса, основанному на рассмотрении только суммарного процесса переноса соли от а" к а, можно составить э. д. с. этой цени как сумму всех четырех электродных потенциалов [отмеченных в схеме (б) как (рь фа, фз и ф4] потенциалы берутся С теми знаками, которые соответствуют расположению электрода в цепи. Ф2 и Г1>з рассматриваются как электроды второго рода, обратимые относительно С1  [c.564]

    Таким образом, сравнивая потенциалы двух сопряженных пар, можно принципиально решить вопрос — какая из них способна выполнить функцию окислителя или восстановителя по отношению к другой. Однако следует иметь в виду, что такое сопоставление не всегда приводит к однозначному решению, поскольку при этом не учитывается кинетический фактор, который не всегда зависит от разности электродных потенциалов отдельных сопряженных пар. Необходимо учесть также, что если эта разность сравнительно невелика, то при увеличении концентрации окисленного продукта реакции последняя может стать заметно обратимой. [c.164]

    Обратимый электродный потенциал металла, возникающий на границе металл—раствор вследствие перехода катионов металла из одной фазы в другую и препятствующий дальнейшему протеканию этого процесса, может служить мерой максимальной работы А последнего  [c.157]

    При замыкании в электролите двух обратимых электродов с разными потенциалами [(Уа)обр и (Ук)обр1 происходит перетекание электронов от более отрицательного электрода (анода) к менее отрицательному (или более положительному) электроду (катоду). Это перетекание электронов выравнивает значения потенциалов замкнутых электродов. Если бы при этом электродные процессы (анодный на аноде и катодный на катоде) не протекали, потенциалы электродов сравнялись бы и наступила бы полная поляризация. В действительности анодный и катодный электродные процессы продолжаются, препятствуя наступлению полной поляризации вследствие перетекания электронов с анода к катоду, т. е. действуют деполяризующие. Отсюда, в частности, происходит и название ионов и молекул раствора, обеспечивающих протекание катодного процесса — деполяризаторы. Однако из-за отставания электродных процессов от перетока электронов в гальваническом элементе (см. с. 192) потенциалы электродов изменяются (сближаются) и короткозамкнутая система, в конечном итоге, полностью заполяризовывается (см. с. 271, 282 и 287). [c.191]

    Значение явлений диффузионного перенапряжения для электрохимических процессов. Уравнения, описывающие диффузионное перенапряжение, основаны на предположении о сохранении термодинамического равновесия между электродом и электро-лито.м и на формуле Нернста для обратимого потенциала. Исследование диффузионного перенапряжения не может дать поэтому никаких дополнительных сведений ни с действительном шути протекания электродной реакции, ни о стадиях, составляющих эту реакцию. Вместе с тем применение экспериментальных методов, основанных иа явлениях диффузионного перенапряжения — ртутногО капельного мегода и вращающегося дискового электрода,— позволяет определить многие величины, играющие важную роль в кинетике электродных процессов и в элеюрохимии вообще, а также установить, является ли диффузия единственной лимитирующей стадией. [c.319]

    В табл. 25 приведены обратимые электродные потенциалы, представляющие наибольший интерес для коррозионных процессов и исследований. [c.170]

    Обратимые электродные потенциалы в водных растворах при 25  [c.171]

    Устойчивое во времени значение не-тн о обратимого электродного потенциала ме- 1 I I талла, соответствующее равенству сумм [c.176]

    Некоторая часть электродных потенциалов металлов является искаженными обратимыми потенциалами при следующих условиях  [c.179]

    Участки металла, соприкасающиеся с более разбавленным раствором, при установлении искаженного обратимого электродного потенциала являются анодами [c.189]

    Для того чтобы найти значение электродного потенциала, необходимо измерить не напряжение работающего элемента, а именно его э. д. с. При измерениях э. д. с. сопротивле ние внешней цепи (т. е. измерительного устройства) очень велико. Реакция в элементе при этом практически не протекает. Таким образом, электродные потенциалы отвечают обратимому протеканию процессов, или, что то же самое, состоянию электрохимичё- ского равновесия иа электродах. Поэтому электродные потенциалы часто называют равновесными электродными потенциалами или просто равновесными потенциалами. [c.283]

    Для многих металлов электродные потенциалы полуэлементов, Ё которых осуществляются обратимые реакции, соответствующие процессам (435)—(4376), измерены или вычислены из других термодинамических величин. [c.218]

    Если другие стадии электродной реакции протекают обратимо или со скоростями, несравненно более высокими, чем скорость транспортировки, то все изменение потенциала электрода, обусловленное прохождением тока, можно отождествить с диффузионным пе-рспапряжсннем. В этом случае для диффузионного перенапряжения оудст справедливым уравнение (14.6) в форме [c.299]

    Эффективность вредного влияния (ускоряющего действия) катодного контакта на коррозию основного металла в обычных условиях активного растворения зависит а) от природы металла (его обратимого электродного потенциала в данных условиях и поляризуемости электродных процессов) и б) от величины по- [c.358]

    Диаграммы Пурбе (диаграммы состояния системы металл—вода) могут быть использованы для установления границ термодинамической возможности протекания электрохимической коррозии металлов и решения некоторых других вопросов. Зти диаграммы представляют собой графики зависимости обратимых электродных потенциалов (в вольтах по водородной шкале) от pH раствора для соответствующих равновесий с участием электронов (горизонтальные линии) и электронов и ионов Н или ОН (наклонные линии) на этих же диаграммах показаны (вертикальными линиями) равновесия с участием ионов Н" или ОН , но без участия эл ктронов (значения pH гидратообразоваиия). На рис. 151 приведена диаграмма Пурбе для системы алюминий—вода, соответствующая уравнениям табл. 32. [c.218]

    Электрохимическое выделение мета [Лов из водных растворов происходит при более отрицательном иотегщиале, чем равновесный потенциал соответствующего металла в данных условиях. Разность между ноте1щиалом электрода под током (прп катодном выделении металла) и соответствующим обратимым электродным потенциалом дает электродную нолярнзанию [c.453]

    Начальные значения (при / нсшн = 0) электродных потенциалов, измеряемых на металлах, принимают некоторое промежуточное значение между обратимым потенциалом анодного процесса ме)об и обратимым потенциалом катодного процесса (Ук)обр. определяемое точкой пересечения идеальных анодной (УХбр — V, и катодной (Ук)обр — [c.283]

    Определять энергию активации электродных процессов сложно и потому, что Qo Ф onst = / (Т), так как dVlepldT) =h О (см. табл. 19). Зто затруднение можно устранить, или определяя скорость процесса i при близких температурах, или учитывая температурный коэффициент соответствующего обратимого потенциала электродного процесса, или, как указывалось выше, измеряя поляризацию относительно обратимого того же электрода в тех же условиях, включая и температуру. [c.354]

    Если условия контактной коррозии металлов таковы, что суммарная анодная кривая (Уа1)обр 1 вновь пересекается с суммарной катодной кривой (Ук)обр кс в области значительной зависимости последней от перенапряжения катодного процесса (перенапряжения водорода), например в точке 3 (рис. 255), то так же, как и в первом случае, эффективность ускоряющего действия катодного контакта на коррозию основного (анодного) металла будет зависеть от природы металла катодного контакта (его обратимого электродного потенциала в данных условиях ( аЛобр. поляризуемости электродных процессов и Ра, [c.361]


Смотреть страницы где упоминается термин Электродные обратимость: [c.266]    [c.157]    [c.164]    [c.297]    [c.307]    [c.439]    [c.442]    [c.553]    [c.176]    [c.176]    [c.222]    [c.360]   
Полярографические методы в аналитической химии (1983) -- [ c.172 , c.174 ]




ПОИСК





Смотрите так же термины и статьи:

Величины токов обратимых электродных процессов

Влияние димеризации электродных продуктов на процессы с обратимой электрохимической стадией

Влияние растворителя на обратимые электродные потенциалы

Вольтамперометрия обратимая электродная реакция

Гальваностатические кривые с переходным временем в случае обратимого электродного процесса

Графов, Э. В. Пекар. Использование липпмановских зарядов обратимого электрода для нахождения параметров электродного импеданса

Измерение обратимых электродных потенциалов Бейтс

Исследование обратимости электродных процессов методом импульсной полярографии

Кинетика электродных процессов Обратимые электродные процессы комплексов металлов Влияние потенциала электрода и состава раствора на скорость электродных процессов

Критерии обратимости электродного процесса

Критерий обратимости электродного

Некоторые другие обратимые процессы с димеризацией электродных продуктов

Обратимость электродной реакции

Обратимость электродных реакци

Обратимость электродных реакци критерии

Обратимые и необратимые электродные потенциалы металлов

Обратимые переменнотоковые электродные процессы

Обратимые электродные потенциалы

Обратимые электродные процессы

Обратимые электродные процессы в системах металл—комплексы металла

Обратимые электродные процессы комплексов металлов, ограниченные диффузией

Обратимые электродные процессы окислительно-восстановительных систем, образованных комплексами металлов

Обратимый и необратимый электродный процессы в ИВ

Обратимый электродный процесс, осложненный адсорбцией деполяризатора или продукта

Определение содержания хинонов методом циклической вольтамперометрии. Оценка обратимости электродной реакции

Понятие об обратимости электродных реакций

Потенциал электрода электродный обратимый

Потенциал электрода электродный обратимый равновесный

Равновесие устанавливается быстро по сравнению с временем капли, электродная реакция обратима

Уравнения кривых обратимого электродного процесса, регистрируемых методом вращающегося дискового электрода

Уравнения хронопотенциометрических кривых обратимого электродного процесса

Условие обратимости электродного процесса

Условие обратимости электродного процесса в методе вращающегося диска

Условие обратимости электродного процесса в хроноамперометрии

Условие обратимости электродного процесса в хронопотенциометрии

Условия функционирования обратимых электродов. Некоторые сведения о кинетике электродных процессов

Электродные обратимые

Электродные обратимые

Электродные обратимые, уравнение

Электродные процессы с обратимой электрохимической стадией

Электродные реакции комплексов металлов, включающие обратимые химические стадии

Электродные реакции с медленной электрохимической стадией и обратимыми химическими стадиями



© 2025 chem21.info Реклама на сайте