Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Влияние на интенсивность спектральных линий и пределы обнаружения

    В низкотемпературном пламени светильный газ — воздух атомные линии излучают щелочные металлы литий, натрий, калий, рубидий, цезий. Для определения калия используют излучение резонансного дублета 766,5 и 769,9 нм (4251/2—4 Р°1/2,3/2), расположенного на границе видимой и инфракрасной частей спектра. Потенциал возбуждения этих спектральных линий Ев) — 1,62 эВ. Факторы специфичности интерференционных фильтров калия по отношению к излучающим в этих условиях элементам достаточно высоки и достигают нескольких тысяч. Влияние состава анализируемого раствора на интенсивность излучения калия в большой степени зависит от его концентрации и температуры пламени. В пламени светильный газ — воздух ионизация атомов калия незначительно проявляется лишь при его низких концентрациях в растворе порядка 1-—2 мкг//мл. Присутствие 2—4 мкг/мл натрия в растворе, содержащем менее 2 мкг/мл калия, увеличивает интенсивность излучения калия. При более высоких концентрациях калия в растворе влиянием легко ионизующихся примесей можно пренебречь. Кислоты и анионы уменьшают интенсивность спектральных линий калия, причем наибольшее влияние оказывают фосфат-ионы. Предел обнаружения калия составляет 0,05 мкг/мл. [c.40]


    Влияние на интенсивность спектральных линий и пределы обнаружения [c.73]

    Разряд в полом катоде. Особое место среди источников света в спектрографическом анализе веществ особой чистоты занимает разряд в полом катоде, позволяющий понизить пределы обнаружения на несколько порядков [162, 165, 361, 367, 1163]. Показана эффективность применения полого катода для определения многих примесей, в том числе натрия, в труднолетучих основах и особо чистых веществах [386]. Изучено влияние различных факторов на интенсивность линий натрия химических свойств газа-носителя, геометрических )азмеров полости, величины разрядного тока [358], давления газа 176, 358, 661], способа введения раствора в полый катод [366], наложения магнитного поля [423, 541]. Исследовано распределение интенсивности спектральных линий натрия по поперечному сечению [c.110]

    Другие источники возбуждения. В многоэлементном анализе в качестве источников возбуждения при определении натрия в природных водах применяли плазмотрон постоянного тока, работающий в атмосфере аргона [850]. Изучены спектральные характеристики факела плазменной горелки и влияние различных факторов (ток разряда, скорость вдувания образца в разряд и тангенциального потока газа) на интенсивность спектральных линий [707, 777, 878]. Для натрия предел обнаружения равен 0,5 мкг/мл. [c.112]

    В последние годы все большее применение в химико-спектральном анализе находит индукционный высокочастотный разряд (1СР-плазма), который стабилен и имеет высокую температуру аналитической зоны разряда. С использованием этого источника натрий определяли в смазочных маслах [970], а также при серийном испытании качества воды (предел обнаружения натрия 20 мкг/л) [756]. Показано отсутствие влияния поверхностно-активных веществ на интенсивность спектральных линий [970]. При определении натрия в смазочных маслах стандартными растворами служили растворы металлоорганических соединений [861]. [c.113]

    В соответствии с равенством (5.3.6.2) 1х = О, если с = 0. Однако линия становится практически невидимой при концентрации ниже определенной концентрации Со вследствие мешающего влияния фона и главным образом его флюктуаций, а также из-за ограниченных возможностей визуального наблюдения. Значение Со можно называть пределом обнаружения по данной спектральной линии. Согласно Харвею, в проверенных им случаях линии становятся обычно наблюдаемыми, если их интенсивность равна половине интенсивности фона. Таким образом, в соответствии с равенством (5.3.6.2) Со = 0,Ък, т.е.к = Со/0,5  [c.56]


    Описан эффект прикатодного усиления интенсивности спектральных линий элементов с низкими потенциалами ионизации [944]. Использование прикатодной области плазмы дуги постоянного тока позволяет значительно снизить предел обнаружения натрия. Так, при определении натрия в материалах на основе урана (пробу помещали в анод) он равен 5 10 % [590]. Такой же метод используют при анализе фосфатов [591]. Дуговой разряд стабилизируют с помощью КОН [43] или К2СО3 [132]. В последней работе имеются сведения о влиянии количества К2СО3 на интенсивность линий натрия. Изучено влияние хлоридов, фторидов и иодидов на определение натрия в AI2O3 [1189]. [c.98]

    Важным является вопрос о влиянии других элементов-примесей на интенсивность спектральных линий ряда трудновозбудимых элементов в низкозольтной искре и вакуумной высоковольтной искре. Показано [59], что интенсивность линий ионов серы, хлора и брома возрастает с уменьшением ионизационного потенциала влияющего элемента. Это объясняют изменением состава плазмы источника света, ведущим к снижению температуры разряда до более благоприятных значений. Так, снижение пределов обнаружения 5 (1667 А) до 7-10-5%, 5е (1606 А) до 10- %, Те (1678 А) до 7-10- % в угольном порошке при использовании вакуумной высоковольтной искры достигнуто добавлением в брикетированную пробу 10% хлоридов натрия и калия. [c.207]

    Исследовано влияние различных факторов (сила тока дуги, продолжительность возбуждения спектра, пористость графита, размеры электрода, навеска пробы, носитель) на интенсивность спектральных линий определяемых элементов. Связь между интенсивностью спектральных линий и внутренним диаметром камерного электрода (а следовательно, аналитической навеской пробы) носит экстремальный характер при силе тока 30 А для большинства элементов наблюдается максимум при 04 мм (навеска пробы угольного порошка 0,4 г). На основании полученных данных разработаны методики спектрального определения микропримесей в угольном порошке и ТеОг. Пределы обнаружения (в скобках даны цифры для обычного метода) в случае анализа ТеОг для ряда элементов составили (%) В1 М0 (3-10- ) Сг 3-10- (Ы0- ) 1п 3-10-ЧЫО ) Мп М0-б(1.1О-4) Оа ЫО-е(МО- ) N1 8-10- (5-10- ) РЬ 1-10-5(5-10- ) V 3-10-б(5-10-4). На уровне концентрации 3-10" % относительное стандартное отклонение ряда единичных определений 5—10%. Метод использован для анализа угольного порошка, ТеОг, соединений щелочных металлов, а также органических веществ. [c.161]

    Теоретические основы наиболее распространенных современных методов спектрального анализа изложены в [441]. Структура электронных оболочек атома хрома — 15 25 2р 35 3р 3й 45 — определяет сложный характер его спектра. Он состоит из 1133 спектральных линий [477]. Наиболее интенсивные линии хрома расположены в видимой области и имеют длины волн 425,43, 427,48 и 428,97 нм. Для определения малых количеств хрома используют линию 425,43 нм [178, 186]. Однако в присутствии кальция она непригодна для определения хрома из-за влияния интенсивной линии кальция 428,93 нм. В УФ-области имеется ряд менее чувствительных линий 340,53, 357,86 и 389,34 нм. Во многих случаях пользуются также линиями 278,07, 283,56, 284,32 и 284,98 нм. Например, пределы обнаружения хрома по линии 283,56 нм равны 1-10 % при возбуждении спектра в обычной дуге и 5-10 % — в дуге Столвуда [283]. [c.72]

    Исследованы возможности снижения пределов обнаружения прямых методов спектрального анализа вращающегося дискового электрода с искровым возбуждением спектра, высокочастотного факельного разряда и двойного полого катода (ПК). Показано, что испарение растворителя с поверхности медного вращающегося электрода обдувом восходящей части диска нагретым воздухом приводит к повышению интенсивности линий элементов раствора тем большему, чем выше скорость вращения электрода. Даны рекомендации по выбору оптимальной температуры воздушной струи. Разработанный метод позволяет снизить пределы обнаружения элементов на 1,0—1,5 порядка. Рассмотрено взаимное влияние элементов и органических жидкостей на интенсивность линии при возбуждении спектра растворов в высокочастотном факельном разряде. Обоснован вывод о перспективности использования данного типа источника возбуждения для понижения пределов обнаружения элементов с низкими значениями потециала ионизации (5г, Ва) до 5,10" —10 %, Исследованы основные процессы поступления и возбуждения атомов в двойном ПК при питании катода-возбудителя постоянным (горячий и охлаждаемый ПК) и импульсным током. Установлено, что применение двойного горячего ПК повышает чувствительность определений на 0,5—1,0 порядка, а охлаждаемого катода-возбудителя и при- его импульсном питании — на 1—2 порядка по сравнению с обычным вариантом метода, Рис. 2, библ. 7 назв. [c.234]


    Для снижения относительных пределов обнаружения в порощ-кообразных веществах предложен спектральный метод сканируемого электрода, в котором используют дуговой разряд, горящий между горизонтально расположенным движущимся (сканируемым) электродом с пазом, вмещающим до 0,2—0,4 г пробы, и неподвижным верхним противоэлектродом. Исследовано влияние различных параметров (силы тока дуги, геометрии канала, скорости движения электрода и др.) на интенсивность аналитических линий определяемых элементов при анализе веществ самой различной природы. Разработана группа аналитических методик анализа различных веществ (графитовый порошок, некоторые соединения РЬ, А1, Те, Т1, Ва) с относительным пределом обнаружения 10- —10— мас. %, что в 5—10 раз ниже, чем при использовании обычной спектральной методики. Табл. 2, рис. 7, библиогр. 7 назв. [c.233]


Смотреть страницы где упоминается термин Влияние на интенсивность спектральных линий и пределы обнаружения: [c.38]    [c.40]    [c.38]    [c.111]    [c.75]   
Смотреть главы в:

Методы спектрального анализа -> Влияние на интенсивность спектральных линий и пределы обнаружения




ПОИСК





Смотрите так же термины и статьи:

Линии интенсивность

Линии спектральные, интенсивност

Предел обнаружения

Спектральные интенсивности



© 2024 chem21.info Реклама на сайте