Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Технология скандия

    Сходные металлургические проблемы возникают при получении по указанной технологии скандия, применяемого для легирования сплавов, используемых в военной и аэрокосмической промышленности. Можно привести аналогичные примеры применительно к производству гадолиния, самария, неодима и различных прецизионных сплавов. Для решения подобных проблем сделаны удачные попытки использовать принципы прямого индукционного нагрева исходных шихтовых материалов для получения слитков редких металлов, обладающих комплексом нужных химических и физических свойств. [c.688]


    Во вторую часть включено описание химии и технологии скандия, иттрия, лантана и лантаноидов, германия, титана, циркония, гафния и их соединений. Содержание книги отражает все наиболее существенные сведения об указанных элементах, опубликованные за многие годы как в отечественной, так и в зарубежной периодической печати и в монографиях. Учтены также научно-исследовательские изыскания авторов настоящего пособия. [c.312]

    Книга представляет собой учебное пособие по специальным курсам для студентов химико-технологических вузов. Во второй части книги изложены основы химии и технологии скандия, иттрия, лантана, лантаноидов, германия, титана, циркония, гафния. Наибольшее внимание уделено свойствам соединений элементов, имеющих значение в технологии. В описании технологии приведены важнейшие области применения элементов, исходное сырье и его обогащение, получение соединений элементов из концентратов и отходов производства, современные методы разделения и очистки элементов. [c.2]

    Изучением металлов вначале в основном занимались геохимики [342], затем, после того как стало известно о вредном действии металлов на технологию переработки и эксплуатационные свойства топлив, ими начали заниматься химики и технологи (табл. 110). Изучение распределения микроэлементов по нефтяным фракциям также выявило определенные зависимости, важные для технологических процессов [344] (табл. 111). Например, железо, кобальт, хром, марганец, рубидий в повышенных концентрациях обнаружены во фракциях тяжелых нафтеновых нефтей. Ртуть, сурьма, скандий, наоборот, обнаружены в более высоких концентрациях в сравнительно легких метановых нефтях. Независимо от типа нефти выделены микроэлементы, для которых отмечена четкая приуроченность, с одной стороны, к легким фракциям, а с другой— к тяжелым (кобальт, хром, железо). [c.300]

    Материал в пособии изложен последовательно согласно расположению элементов в группах периодической системы Д. И. Менделеева. Большой объем материала вызвал необходимость расчленить книгу на три части, которые выходят в свет одновременно. В I части излагается химия и технология лития, рубидия и цезия, бериллия, галлия, индия и таллия, во П части — скандия, иттрия, лантана и лантаноидов, германия, титана, циркония и гафния, в П1 части — ванадия, ниобия, тантала, селена, теллура, молибдена, вольфрама, рения. [c.3]

    Селективность (избирательность), высокая производительность и возможность осуществления экстракционного процесса в непрерывном варианте и в крупных масштабах обусловливают применение этого метода для очистки топлива, масел в нефтяной и коксохимической промышленности, в технологии органических производств, в качестве метода разделения близких по свойствам элементов в гидрометаллургии (редкоземельных элементов — семейства лантаноидов, иттрия и скандия циркония и гафния ниобия и тантала металлов для ядерной энергетики). [c.81]


    Описанная технология приготовления шихты универсальна при синтезе гранатов для ювелирных и технических целей, легированных оксидами с низкой упругостью пара, например, оксидами редких земель и элементов П1 и IV групп Периодической системы элементов Д. И. Менделеева (скандий, гафний, цирконий). Приготовление шихты с легколетучими легирующими добавками, например с оксидами ванадия, имеет некоторые технологические особенности, о которых пойдет речь в соответствующих разделах. [c.178]

    В целях замены экстрагента нами было проведено исследование по экстракции скандия ТБФ из солянокислых растворов роданистого аммония. Выбранный экстрагент соответствует большинству требований промышленной технологии (высокая точка кипения, высокая температура вспышки, отсутствие взрывоопасности и токсичности). [c.289]

    В настоящее время редкие металлы получили применение в самых разнообразных областях науки и техники, причем области применения их из года в год расширяются. Это прежде всего объясняется особыми физическими и химическими свойствами редких металлов, так, например, германий является ценнейшим материалом дЛ1 изготовления полупроводниковых приборов, широко применяемых в различных областях радиотехники и электронике. Для этих же целей применяются индий, теллур, селен и другие. Введение редких металлов в стали и в сплавы цветных металлов обеспечило получение материалов, стойких против коррозии, жаропрочных, обладающих большой механической прочностью и другими ценными свойствами. В химической технологии и металлургии принято разделять редкие металлы на следующие технические подгруппы а) легкие литий, рубидий, цезий, бериллий и др б) тугоплавкие титан, цирконий, гафний, ванадий, ниобий, тантал, молибден, вольфрам, рений в) рассеянные галлий, индий, таллий, германий г) редкоземельные скандий, иттрий, лантан и лантаноиды радиоактивные полоний, радий, актиний и актиноиды. [c.419]

    ЧАСТОТНАЯ ТЕХНОЛОГИЯ ПРОИЗВОДСТВА ЯДЕРНО-ЧИСТОГО ЦИРКОНИЯ, ГАФНИЯ, СКАНДИЯ И ДРУГИХ РЕДКИХ И РЕДКОЗЕМЕЛЬНЫХ МЕТАЛЛОВ [c.686]

    В книге изложены основы технологии важнейших редких и рассеянных элементов лития, рубидия, цезия, бериллия, галлия, индия, таллия, скандия, иттрия, лантана и лантаноидов, германия, титана, циркония, гафния, ванадия, ниобия, тантала, молибдена, вольфрама, рения. В отношении каждого элемента описаны важнейшие области применения, характеристика рудного сырья и его обогащение, получение соединений элементов из концентратов, отходов и полупродуктов производства, получение особо чистых как соединений, так и металлов. [c.4]

    Технология соединения скандия. Методы отделения и очистки скандия от примесей [c.247]

    В книге изложены основы химии важнейших редких и рассеянных элементов лития, рубидия, цезия, бериллия, галлия, индия, таллия, скандия, иттрия, лантаноидов, германия, титана, циркония, гафния, ванадия, ниобия, тантала, молибдена, вольфрама, рения. Наиболее подробно описаны синтез и свойства соединений элементов с кислородом и галогенами, а также солей, имеющих большое значение в технологии. [c.4]

    Соли органических кислот. Скандий, как и РЗЭ, образует соединения с органическими кислотами (щавелевой, уксусной, винной, лимонной и др.). Эти соединения приобрели большое значение в технологии 8с, V и РЗЭ. Карбоновые и оксикарбоновые кислоты были первыми комплексообразователями, применяемыми для разделения 5с, , РЗЭ. В последнее время применяются полиуксусные кислоты нитрилтриуксусная, этилендиаминтетрауксусная и др. Более подробно см. гл. II. [c.10]

    Технология переработки скандийсодержащего сырья. Соединения скандия, а тем более металл, до настоящего времени получают в ограниченных масштабах, не выходящих, как правило, из рамок полупромышленных. Большинство предложенных методов реализовано в лабораторных условиях и лишь некоторые получили промышленное применение. Многие предложения о переработке сырья относятся к такому редкому минералу, как тортвейтит, и, естественно, не могут считаться перспективными. Однако следует рассмотреть эти методы, так как они дают возможность проследить возможные пути отделения скандия от многих примесей и оценить эффективность отдельных операций. [c.30]

    За последние 10-15 лет Китай на базе подобных руд создал мощную редкоземельную промышленность и вышел в мировые лидеры по продаже РЗЭ. Россия же в результате известных дезинтеграционных процессов потеряла производственную базу и основные сырьевые источники скандия и тяжелых лантаноидов и в настоящее время вынуждена импортировать продукты на основе этих элементов. Поэтому проводимые нами исследования химизма образования и накопления легковскрываемых форм РЗЭ, а также разработка основ гидрохимической технологии извлечения редких элементов из бедных руд и техногенных отходов, создание альтернативной сырьевой базы РЗЭ весьма актуальны и имеют практическую направленность. [c.75]

    Кислые алкилфосфаты используют во многих промышленных процессах, в том числе в одном из эффективных вариантов технологии извлечения скандия из полупродуктов переработки кассите-рнтовых и вольфрамитовых концентратов [28, с. 194]. [c.109]


    В частности, усовершенствование технологии получения скандия из отходов оловянных и вольфрамовых предприятий введенн- [c.196]

    Метод очистки препаратов скандия от примесей экстракцией его диэти-ловым эфиром из солянокислых растворов ], насыщенных роданистым аммонием, в последнее время стал классическим методом в аналитической и препаративной химии этого элемента. Однако имеется ряд существенных недостатков данной операции, ограничивающих применение ее в технологии. К ним относятся взрывоопасность, токсичность, низкая точка кипения экстрагента, а также неудовлетворительное отделение скандия от тория, циркония, редкоземельных элементов и других примесей при значительном их содержании (выше 1%). [c.289]

    Один из основоположников геохимии. Основные научные работы посвящены физической химии природного минералогенезиса,. кристаллохимии и химии минералов, горных пород и земной коры. Сформулировал (1911) минералогическое правило фаз из п компонентов может совместно существовать не более п минералов. Вычислил (1914) кривую реакции образования волластонита из кальцита и кварца и применил физико-хи-мические представления к объяснению равновесных соотношений контактовых минералов. Вскрыл (1923—1927) важные соотношения между положением элементов в периодической системе и размерами их атомов и ионов. Установил законы образования различного типа кристаллических структур. Выдвинул (1923) основные положения теории геохимического распространения элементов. Разработал (1923—1924) геохимическую классификацию химических элементов. Особое внимание уделял изучению кристаллов оксидов редкоземельных элементов, а также зависимости твердости кристаллических веществ от их структуры. Исследовал (1929—1932) распространение редких элементов — германия (впервые обнаружил его в углях), скандия, галлия, бериллия и т. п. Будучи сторонником гипотезы об огненно-жидкой дифференциации Земли на геосферы, рассмотрел (1935—1937) ее в свете данных своих геохимических экспериментов о составе пород, метеоритов и оболочек Земли. Осуществлял научно-технические работы в области прикладной минералогии и химической технологии. Организовал производство алюминия из лаб-радоритовых пород Норвегии, калийных удобрений из биотитов. [c.146]

    Фосфаты. Фосфаты являются одной из наиболее распространенных форм нахождения РЗЭ и тория в природе (монацит — см. ниже). Лабораторным путем получены фосфаты РЗЭ и тория, соответствующие всем формам — гипо-, мета-, орто- и пирофосфаты. Все они, как правило, нерастворимы в воде и разбавленных минеральных кислотах. Многие из этих солей используются в анализе и технологии РЗЭ и тория. Особый интерес представляет пирофосфат скандия, практически нерастворимый в соляной и серной кислотах (отчасти растворимый в азотной кислоте). Образование пирофосфата скандия и его состав были тщательно изучены чешскими химиками [68], установившими, что пирофосфат скандия имеет состав 804( 207)3, а не ЗсНРгОу ЗН2О, как считали другие исследователи и, в частности, Бек [682]. [c.260]

    Экстракция галогенидных комплексов — широко распространенный и перспективный метод выделения металлов в аналитической химии, радиохимии и технологии. Во многих химических лабораториях используют экстракцию железа (III) из растворов соляной кислоты. Извлекая соответствующие металлгалогепидные или роданидные комплексы, получают чистый галлий, цирконий, ниобий, тантал, скандий. Большое значение в аналитической химии имеет экстракция галогенидных комплексов золота, сурьмы, таллия. Радиохимики используют этот метод для выделения протактиния, полония, большого числа радиоизотопов без носителя. [c.5]

    Для карботермического восстановления урана из оксидного сырья можно использовать технику и технологию холодного тигля , основанную на прямом частотном индукционном нагреве гиихты ИзОа + + хС, при котором используется ее собственная или индуцированная проводимость. Высокочастотная технология холодного тигля разработана в настоящее время применительно к синтезу бескислородной керамики (карбиды, нитриды и различные керамические композиции см. гл. 7), используется для плавления оксидных керамических материалов [14] низкочастотная технология применяется для крупномасштабного металлотермического производства циркония и гафния из фторидного сырья и рафинирования различных редкоземельных металлов и сплавов (см. гл. 14). В главах 7, 8 и 14 показаны схемы индукционных установок и металлургических печей для синтеза бескислородных керамических материалов, для плавки и рафинирования металлов в дискретном и непрерывно-последовательном режимах по технологии холодный тигель . Эта технология и разработанная техника могут быть, в принципе, использованы в крупномасштабной технологии карботермического восстановления урана из оксидного сырья, однако необходимо проведение НИОКР для решения технологических и аппаратурных проблем. В результате комплекса НИОКР, проведенных в 70-80-х годах, в настоящее время арсенал плазменного и частотного оборудования стал значительно богаче. Так, в 80-х годах появилось металлургическое оборудование типа холодный тигель , работающее на частоте несколько килогерц, применяемое для производства циркония, гафния, редких и редкоземельных металлов, включая скандий появились металлодиэлектрические реакторы, прозрачные к электромагнитному излучению в области радиочастот, используемые для высокотемпературных синтезов бескислородной керамики, для плавления оксидной керамики и даже для остекловывания радиоактивных отходов. Кроме того, проведены НИОКР по созданию комбинированного плазменно-частотного оборудования для решения химико-технологических и металлургических проблем, для некоторых металлургических приложений оборудование мегаваттной мощности уже создано и нашло практическое применение. Результаты этих НИОКР будут изложены в последующих главах очень вероятно, что такое оборудование будет использовано и для внедрения в промышленное производство технологии карботермического восстановления урана из оксидного сырья. [c.319]

    В общей схеме ядерного топливного цикла прямо не показаны новые электротехнологические процессы производства неурановых материалов, используемых в ядерном энергетическом цикле, таких как поглощающие материалы (карбид бора, гафний, соединения редкоземельных металлов и т.д.), конструкционные материалы (например, цирконий, ниобий, никель, скандий), фторид водорода, фтор и т.д. Эти процессы основаны на применении плазменной обработки, прямого высокочастотного индукционного нагрева и микроволновой обработки в газовой и конденсированной фазах. Не показаны также широко применяемые в ядерной технике и технологии процессы нанесения защитных и служебных покрытий на элементы ядерного реактора, на подвергающиеся коррозии и эрозии элементы емкостного оборудования [6]. Сведения о некоторых из них приведены в предыдущих главах и монографии [6.  [c.736]

    Технология переработки скандийсодержащего сырья. Переработка скандиевого сырья на соединения скандия и тем более получение металла в промышленном масштабе до последнего времени, как правило, не проводились. Большинство предложенных методов реализовано только в лабораторных условиях, в лучшем случае [c.257]

    О методах, применявшихся реакционными кругами д.ая тото, чтобы забаллотировать кандидатуру Менделеева, можно судить по высказываниям секретаря Академия наук К. С. Веселовского. В своих неопубликованных записках он писал ...когда открылось вакантное место ординарного академика по технологии, упрямый и злобствовавший на Академию Бутлеров предложил на его Менделеева, зная очень хорошо, что в пользу этого кандидата не составится необходимого большинства голосов, но злорадостно рассчитывал вызвать неприятный для Академия скандал. [c.32]


Библиография для Технология скандия: [c.363]    [c.43]    [c.573]    [c.360]   
Смотреть страницы где упоминается термин Технология скандия: [c.14]    [c.246]    [c.14]    [c.8]    [c.297]    [c.6]    [c.297]    [c.72]    [c.8]   
Смотреть главы в:

Химия и технология редких и рассеянных элементов. Ч.2 -> Технология скандия




ПОИСК





Смотрите так же термины и статьи:

Скандий



© 2025 chem21.info Реклама на сайте