Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Анализ нефтяных сульфокислот

    АНАЛИЗ НЕФТЯНЫХ СУЛЬФОКИСЛОТ [c.273]

    Стандартные испытания и методики анализа нефтяных сульфокислот разработаны хорошо [450]. В число испытаний входит определение среднего молекулярного веса, содержания масла, содержания мыл карбоновых кислот, а также свободной щелочи, воды и неорганических солей. [c.65]

    Для извлечения сульфокислот, из сульфированных масел и кислых гудронов применяются два основных метода. В одном случае кислоты селективно удаляются при помощи адсорбентов или растворителей (обычно низкомолекулярных спиртов), а в другом случае их высаливают органическими солями или основаниями. Более подробный обзор очистки и промышленного применения нефтяных сульфокислот см. в [201—203]. Методы анализа маслорастворимых нефтяных сульфокислот см. в [204—206]. Фенол-< ульфокислоты могут присутствовать даже в высокоочищенных нефтяных сульфокислотах [207]. Сульфокислоты и нафтеновые кислоты можно отделить друг от друга в водном растворе добавлением хлористого натрия нафтеновые кислоты остаются в растворе, в то время как натриевые соли сульфокислот осаждаются 1208]. [c.573]


    Бисульфитный метод количественного определения карбонильных групп ИЗ] основан на том, что при присоединении бисульфита натрия к карбонильной группе образуется соль окси-сульфокислоты, которая в отличие от бисульфита не окисляется иодом. Этот очень удобный метод не применим при анализе нефтяных продуктов, подвергшихся окислению при хранении или в процессе эксплуатации и содержащих гидроперекиси и перекиси, окисляющие бисульфит, а также продуктов, содержащих соединения с олефиновыми двойными связями, вследствие взаимодействия их с иодом. Кроме того, бисульфит натрия, по-видимому, с высшими альдегидами и кетонами не взаимодействует количественно, а имеет место равновесие, недостаточно смещенное вправо  [c.231]

    Следует отметить, что все другие, описанные в литературе [5], но не учтенные в настоящей классификации, нефтяные сульфокислоты или сульфонаты, представляют собой смесь, что установлено и проверено в отношении же давно описанных сульфонатов кальция [4] или бария [5], которые нерастворимы в воде, но растворимы в бензоле и хлороформе и преимущественно получаются при анализах нефтяных сульфопродуктов только в небольших количествах (альфа — один), имеется подозрение, что и они могут оказаться смесью, несмотря на то, что своей растворимостью отличаются от всех других сульфонатов. [c.123]

    Разработанный первый метод анализа химического группового состава нефтяных сульфокислот заключается в разделении компонентов смеси путем распределения сульфонатов и сульфокислот между двумя несмешивающимися растворителями и в весовом определении свободных сульфокислот. Для разработки такого метода не могла быть использована хроматография, так как свойства новых сульфокислот еще не были известны. Принимая во внимание чрезвычайную трудность разделения поверхностно-активных веществ из-за взаимной их сорбции, нельзя ожидать идеального разделения друг от друга сульфокислот или сульфонатов отдельных групп или подгрупп. Тем не менее, разработанный аналитический метод практически правильно отражает групповой состав сульфокислот исследованных сульфопродуктов. [c.123]

    Результаты группового анализа сульфокислот исследованных нефтяных сульфопродуктов и синтетических сульфонатов, представленные в табл. 2, показывают, что  [c.123]

    Натриевые и аммониевые соли сульфокислот из вакуумного газойля практически не растворимы в сильно минерализованных Пластовых водах. При контакте с последними, содержащимися в нефтяных эмульсиях, они полностью высаливаются. Высаливание идет не только вследствие снижения растворимости сульфо-солей натрия или аммония в минерализованной воде, но и в результате обменной реакции с хлористым кальцием пластовой воды, дающей не растворимые в воде кальциевые соли сульфокислот. Высолившиеся сульфосоли не растворяются ни в водной, ни в нефтяной фазах, а собираются на поверхности раздела этих "фаз. Анализами показано, что 60—70% массы, образуя слой. грязи, накапливающейся после разрушения нефтяной эмульсии [c.139]


    Нефтяные сульфокислоты можно грубо разделить на растворимые в углеродах и растворимые в воде. По признаку цвета первые названы цвета красного дерева , а последние — зелеными кислотами. Состав каждого типа кислот меняется в зависимости от сырья, подвергавшегося сульфированию, и концентрации кислоты. В общем случае сульфокислоты, получаемые нри неглубокой кислотной обработке, растворимы в воде, в то время как маслорастворимые кислоты образуются нри более глубоком сульфировании [209]. Была предложена и другая классификация сульфокислот, основанная па растворимости солей кальция этих кислот в воде и этиловом эфире [210—214]. Кислоты классифицируются по четырем типам (см. табл. ХП1-3). Практически ничего не известно о химическом составе упомянутых типов сульфокислот. Предполагается, что природа 7-кислот не зависит от характера сульфируемого нефтепродукта. Элементарный анализ очищенной натриевой соли -кислоты показал формулу С1зН1зЗОдКа. [c.574]

    Технический продукт, находящий обширное применение в нефтяной промышленности (эмульсирующие масла) и для расщеплена жиров, обычно содержит, по анализам Шестакова, до 53% чистых сульфокислот. Все остальное составляют примеси вода, спнрт, вазелиновое масло, немного серной кислоты, свободной и свяфнной, и минеральные вещества. Доброкачественность технического продукта качественно определяется взбалтыванием с водой — образование мутного раствора свидетельствует о неблагоприятном Соотношении между свободными сульфокислотами и минеральным маслом (масла больше 20% и кислот меньше 40%). — [c.325]

    В настоящее время удалось разработать еще более чувствительный метод количественного определения галлия. Божевольнов, Лукин и Гра-динарская изучали влияние заместителей на флуоресцентные свойства внутрикомплексных соединений галлия с диоксиазосоединениями и нашли, что 2,2, 4 -триокси-5-хлор-1,1 -азобензол-З-сульфокислота, при ее применении в водной среде, является реактивом на галлий более чувствительным, чем сульфонафтолазорезорцин, и, кроме того, ее комплекс с галлием извлекается изоамиловьш спиртом и флуоресцирует после этого более интенсивно [89—91]. В интервале значений рН=1,7—3,5 интенсивность флуоресценции комплекса галлия с этим реактивом практически постоянна. В случае равенства объемов изоамилового спирта и испытуемого водного раствора интенсивность флуоресценции извлеченного комплекса увеличивается в 3,5 раза. Интенсивность флуоресценции растворов реактива в присутствии галлия как в водных растворах, так и в изоамиловом спирте пропорциональна концентрации галлия, если последняя не превышает 0,5 у в 5 лл раствора. В водном растворе чувствительность реакции 0,01 у в 5 мл. При применении изоамилового спирта для извлечения комплекса и соотношении объемов изоамилового спирта и водного раствора 1 10 можно в последнем открыть галлий в количестве 0,0005 у в 5 мл, что соответствует предельному разбавлению 1 10 ООО ООО г/г. Детальное исследование влияния различных катионов и анионов на интенсивность флуоресценции галлиевого комплекса показало, что при количествах, в 100 раз-больших, чем содержание галлия, к тушению приводят Зи, Zг, Рг, а при количествах, в 10 раз больших,—Си, Ге, V, Мо. Остальные катионы не тушат даже нри 1000-кратном содержании. Алюминий способен образовывать флуоресцирующий комплекс, однако его флуоресценция менее интенсивна. При соотношении количеств галлия и алюминия 1 1 можно пренебречь присутствием последнего и выполнять измерения при pH раствора 1,7—3,5. В случае десятикратного избытка алюминия необходимо работать при pH растворов 1,7—2,7, а в случае стократного избытка— в еще более узком интервале значений рН = 1,7—2,2. Применение метода добавок (см. приложение УП, стр. 396 — определение алюминия в уксуснокислом натрии) позволяет проводить определения и в присутствии гасящих примесей. Реакция с морином применена для определения следов галлия в минералах [29, 100], нефтяных водах [100], метеоритах [100], биологических объектах [101]. От основной массы посторонних катионов освобождаются путем извлечения галлия эфиром из солянокислого раствора. С целью увеличения специфичности реакции применяют обычные аналитические приемы, например флуоресценцию, обусловленную алюминием, уничтожают прибавлением раствора, содержащего в 100 мл воды 3 г фтористого натрия, 1,8 г буры и 5 ледяной уксусной кислоты [29]. В [100], с целью повышения специфичности реакции, приводится метод определения галлия, основанный на измерении яркости флуоресценции хлороформенного раствора купферон-морин-галлиевого комплекса ). Авторы указывают, что разработанный ими метод чувствительней применяемого в спектральном анализе и позволяет определять галлий в количествах от 1 до-6 у в 6 мл хлороформа. [c.174]

    Для определения содержания активного компонента использован метод двухфазного анион-катионного титрования [4—6]. Метод применим для анализа нейтральных и высокощелочных кальциевых, бариевых, магниевых, а также натриевых и аммонийных сульфонатов,. имеющих достаточно длинные алкильные цепи [7]. Он пригоден также для количественного определения свободных сульфокислот в синтетических алкилбензолах и нефтяных маслах после их сульфирования серным ангидридом или какими-либо другими сульфирующими агентами. [c.114]



Смотреть страницы где упоминается термин Анализ нефтяных сульфокислот: [c.572]    [c.380]   
Смотреть главы в:

Технический анализ нефтепродуктов и газа -> Анализ нефтяных сульфокислот




ПОИСК







© 2025 chem21.info Реклама на сайте