Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Гаплоидные и диплоидные клетки

    Для прокариот характерны гаплоидные ядра, хотя при половой конъюгации бактерий, а также в некоторых экспериментальных условиях образуются частично диплоидные клетки, содержащие двойной набор отдельных генов. [c.18]

    Половое размножение получает окончательное развитие у эукариот, где рост многоклеточного организма начинается со слияния двух гаплоидных гамет — яйцеклетки и сперматозоида. Каждая гамета несет полный набор генетических инструкций образовавшееся после слияния ядер оплодотворенное яйцо (зигота) является диплоидным. Диплоидная клетка содержит два полных набора генетических матриц, полученных от двух совершенно разных родителей. Это дает развивающемуся организму огромные преимущества. В самом деле, если какой-либо ген, полученный от одного из родителей, окажется дефектным, то весьма мало вероятно, что соответствующий ген от второго родителя будет тоже дефектным. Кроме того, половое размножение — это средство смешивания генов, и каждый из нас получает не просто половину генов от матери и половину от отца, но также какие-то гены от дедушек и бабушек, от прадедушек и прабабушек и т. д. [c.39]


    Гаплоидные и диплоидные клетки [c.42]

    У человека и высших животных в результате мейоза образуются гаметы— яйцеклетка и сперматозоиды. При их слиянии возникает снова диплоидное ядро, из которого путем последовательных митозов развивается взрослый организм. Стадия мейоза характерна для жизненного цикла всех эукариот, однако отнюдь не всегда этот процесс протекает в период, аналогичный соответствующему моменту жизненного цикла человека. Так, клетки многих простейших и грибов обычно гаплоидны. После слияния двух гаплоидных ядер с образованием диплоидной клетки быстро наступает мейотическое деление, в результате которого вновь возникают гаплоидные особи. Чередование гаплоидных и диплоидных фаз жизненного цикла часто встречается у низших растений и примитивных животных. Например, гаметы папоротника падают на почву и [c.42]

    Доказательства генетической роли ДНК в целом неопровержимы. ДНК локализована в хромосомах, причем содержание ДНК в диплоидных (соматических) клетках разных тканей у особей одного и того же вида практически постоянно. В гаплоидных половых клетках количество ДНК вдвое меньше, чем в соматических [22]. Содержание ДНК в клетках удваивается при митозе, т.е. при удвоении хромосом. [c.486]

    При мейозе в результате двух последовательных клеточных делений из одной диплоидной клетки образуются четыре гаплоидные. У животных начальные фазы формирования яйцеклетки и сперматозоида сходны. В обоих случаях в мейозе доминирует профаза I, которая может занимать 90% всего времени [c.26]

    Мейотическое деление претерпевают всегда только диплоидные клетки, гаплоидные же - никогда. Само слово диплоидный означает, что налицо имеется два набора хромосом например, вместо трех хромосом (гаплоид) в клеточном ядре находится 2-3 хромосом (диплоид). Иными [c.118]

    Рассмотрим отрезок хромосомы, содержащий цистроны 8ш и Ь. При конъюгации клеток мужская вводит в женскую свое генетическое вещество, и образуется зигота, т. е. диплоидная клетка, содержащая двойную хромосому (исходные бактериальные клетки — гаплоидные — имеют по одной хромосоме). Структура отрезка двойной хромосомы выглядит схематически так, как показано па рис. 100. [c.307]

    Процесс размножения делится на три основные стадии гаметогенез, оплодотворение и развитие зародыша. Гаметогенезом называют образование гамет спермиев в процессе сперматогенеза и яйцеклеток — в процессе оогенеза. Как тот, так и другой процессы происходят в гонадах в семенниках у мужчин и в яичниках у женщин. Оба процесса включают мейоз — деление ядра, в результате которого число хромосом в клетке, соответствовавшее двум наборам (диплоидное состояние), уменьшается вдвое, т. е.становится равным одному набору (гаплоидное состояние). Клетки, претерпевающие мейоз, называют материнскими клетками. Материнские клетки спермиев называют сперматоцитами, а материнские [c.76]


    В гаплоидных, диплоидных и полиплоидных клетках При образовании соматических клеток и некоторых спор При образовании гамет у растений [c.158]

    Для дрожжей характерно проявление двух альтернативных вариантов экспрессии определенной группы генов, которые определяют тип спаривания (а или а) индивидуальных клеток. Гаплоидные а-клетки способны узнавать и сливаться с гаплоидными а-клетками с образованием диплоидов (а/а). Диплоидные клетки могут расти в виде диплоидов или при голодании подвергаться мейозу с образованием гаплоидных спор с типами спаривания а или а. При мейозе маркеры а и а расщепляются как аллельные варианты по локусу типа спаривания, который картируется в хромосоме П1. Прорастание гаплоидной споры любого типа сопровождается делением клеток за счет почкования. После первого отпочкования клетка приобретает способность к переключению типа спаривания на противоположный как для себя самой, так и для следующей дочерней клетки в ходе второго деления. Таким образом, при каждом последующем делении происходит подобное переключение с частотой около 80%, что приводит к появлению диплоидного потомства гаплоидной споры (рис. 16.18). [c.234]

    Как полагают, эволюционные ветви, приведшие к почкующимся и к делящимся дрожжам, дивергировали сотни миллионов лет назад. Тем не менее жизненные циклы у тех и других сходны. Обе формы могут размножаться либо в диплоидном, либо в гаплоидном состоянии. Диплоидные клетки помимо деления обычным путем способны проходить через мейоз, образуя гаплоидные клетки (см. гл. 15) а гаплоидные клетки наряд с обычным делением могут попарно сливаться между [c.408]

    Если две гаплоидные дрожжевые клетки несут индивидуальные гены, которые планируется совместить в одной гаплоидной клетке, необходимо провести скрещивание этих штаммов, получить диплоидные клетки, а затем после мейоза и споруляции выделить и анализировать гаплоидные споры. [c.221]

    Путем последовательных митотических делений из одной оплодотворенной яйцеклетки формируется взрослый организм. Для формирования организма человека достаточно всего 40—50 последовательных митозов. Однако образование гамет (половых клеток), имеющих гаплоидный набор хромосом, осуществляется путем мейоза — специального процесса, в ходе которого число хромосом делится надвое. При мейозе одна хромосома из каждой гомологичной пары, содержащейся в диплоидной клетке, переходит в одну из образующихся гамет. В организме, подобном As aris, который содержит единственную пару хромосом, гамета получает хромосому либо от отцовского организма, либо от материнского, но не от обоих сразу. В организмах, имеющих несколько пар хромосом, хромосомы при мейозе распределяются случайным образом, так что в каждой гамете имеются как материнские, так и отцовские хромосомы. [c.40]

    Дрожжи — это грибы, приспособившиеся к существованию в среде с высоким содержанием сахара они остаются обычно одноклеточными и размножаются путем почкования (рис. 1-8). Время от времени их гаплоидные клетки попарно сливаются и образуют диплоидные клетка и половые споры. Одни дрожжи относятся к аскомицетам, другие — к базидиомицетам. Sa haromy es erevisiae, активное начало как пекарских, так и пивных дрожжей, является аскомицетом, способным к неог-. раниченному росту как в диплоидной, так и гаплоидной фазе, причец диплоидные клетки несколько крупнее гаплоидных [37]. [c.47]

    При половом размножении происходит циклическое чередование диплоидного и гаплоидного состояний диплоидная клетка делится путем мейоза, порождая гаплоидные клетки, а гаплоидные клетки попарно сливаются при оплодотворении и образуют новые диплоидные клетки. Во время этого процесса происходит перемешивание и рекомбинация геномов, в результате чего появляются особи с новыми наборами генов. Высшие растения и окивотные большую часть жизненного цикла проводят в диплоидной фазе, а гаплоидная фаза у них [c.14]

    Диплоидные ядра содержат по две копии каждой хромосомы (это не относится лишь к половым хромосомам), одна из которых происходит от мужского родителя, а другая-от женского. Эти две копии называются гомологами. Перед обычным митотическим делением каждый из пары гомологов удваивается, и две образовавшиеся копии остаются соединенными вместе (их называют сестринскими хроматидами). Сестринские хроматиды выстраиваются в экваториальной плоскости веретена таким образом, что их кинетохорные волокна направлены к противоположным полюсам. В результате сестринские хроматиды в анафазе отделяются друг от друга и каждая дочерняя клетка наследует по одной копии каждого гомолога (см. рис. 11-41). Но Гаплоидные гаметы, образовавшиеся при делении диплоидной клетки путем Мейоза, должны содержать лишь по одному гомологу каждой пары. В связи с этим к аппарату клеточного деления здесь предъявляется дополнительное требование гомологи должны иметь юзможность узнавать друг друга и соединяться в пары, перед тем как они выстроятся на экваторе веретена. Такое спаривание, или конъюнгация, гомологичных хромосом материнского и отцовского происхождения происходит только в мейозе. [c.15]


    У Sa haromy eta eae, или собственно дрожжей (рис. 5.9 и 5.10), мицелий отсутствует. Пекарские и пивные дрожжи представляют собой физиологические расы Sa haromy es erevisiae. Гаплоидные почкующиеся клетки дрожжей могут сливаться (копулировать). За кариогамией может сразу же следовать редукционное деление (мейоз) и образование четырех аскоспор. Однако диплоидные клетки тоже способны размножаться почкованием они крупнее и физиологически активнее гаплоидных. В промышленности используют преимущественно диплоидные и полиплоидные расы Лишь в неблагоприятных условиях (например, на среде с ацетатом) диплоидная клетка превращается в аск. [c.169]

    Рнс. 5.10. Циклы развития дрожжей. А. Sa haromy es erevisiae (преимущественно диплоидный вид) копуляция происходит непосредственно после образования аскоспор. Б. Zygosa haromy es (гаплоидные дрожжи) копулируют гаплоидные вегетативные клетки, а диплоидная фаза ограничивается зиготой. [c.170]

    В НИХ диплоидность — наличие двойного набора цистронов — наблюдается только в зиготе, а последняя существует в неизменном виде недолго (3—4 периода деления), и свойства ее расщепляются, в результате чего получаются колонии определенных гаплоидных клеток. Однако, если обратить внимание именно на зиготу (для этого следует освободиться от фона отцовских и материнских клеток), то в ней мы обнаруживаем настоящую диплоидную клетку, где обмен веществ управляется двойным набором цистронов. И тут понятие доминантности становится совершенно ясным. Если в зиготе присутствуют два аллеломорфных цистрона, из которых один поврежден, а второй цел, то-клетка сможет синтезировать соответствующий фермент, т. е. будет вести себя как прототроф. Это вполне очевидно, так как при репликации РНК на ДНК хромосомы всегда существует равная вероятность репликации неповрежденного активного цистрона, а значит, будут образовываться матрицы, пригодные для синтеза фермента. Следовательно, доминантным будет всегда активный цистрон, ведупщй к синтезу какого-либо вещества в данном случае фермента. [c.489]

    Гаплоидные гаметы, одна с обменом, другая нормальная, изображены вверху. В середине показано строение (диплоидной) клетки особи В мейо-тической профазе нормально происходит попарная конъюгация гомологичных хромосом, происшедших соответственно от отца и матери. Если произошел обмен, то для конъюгации гомологичных участков хромосом необходимо соединение не двух хромосом, а четырех, как это и изображено во втором ряду рис. 63. В анафазе первого мейотического деления четыре хромосомы расходятся, причем к каждому полюсу отходят две из них. Если две хромосомы (см. рис.63), [c.251]

    Мейоз (от греч. тё15з1з — уменьшение) — форма деления ядра, сопровождающегося уменьшением числа хромосом от диплоидного (2 ) до гаплоидного (л). Как и при митозе, при этом во время интерфазы происходит репликация ДНК в родительской клетке, однако за этим следуют два цикла делений ядра и делений клеток, известные как первое деление мейоза (мейоз I) и второе деление мейоза (мейоз II). Таким образом, одна диплоидная клетка дает начало четырем гаплоидным клеткам, как это схематически показано на рис. 23.10. [c.151]

    При оценке репродуктивного возраста дрожжевых клеток и форм их гибели при непосредственном наблюдении за клетками было показано, что диплоидные клетки Sa h. erevisiae могут продуцировать от 23 до 49 дочерних клеток, а гаплоидные — от 2 до 33 клеток. При этом наблюдаются две формы гибели клеток 1) материнская клетка отделяет от себя дочернюю и в дальнейшем прекращает почковаться и 2) материнская клетка образует почку и вместе с ней гибнет (Johnston, 1966). [c.16]

    Внутри ядра имеются длинные образованпя — хроматиновые нити, с трудом видимые в покоящейся клетке, т. е. существующей в период между двумя делениями. Перед делением клетки хроматиновые нити образуют палочкообразные тельца — хромосомы. Число и форма их постоянны для данного вида организмов. В соматических (не половых) клетках высших растений и животных хромосомы существуют попарно, т. е. но две копии каждого типа. Такая пара хромосом называется гомологичной, подобный пабор хромосом — диплоидным. Клетки человека содержат 23 нары хромосом (46). Из общего правила, что в клетках с диплоидным набором каждая хромосома представлена двумя копиями, имеется исключение. Оно заключается в том, что в клетках женских особей одна пара хромосом содержит две одинаковые Х-хромосомы, а в клетках мужских особой — одну X- и одну У-хромосому, отсутствующую в женских клетках. В половых клетках (гаметах) число хромосом вдвое меньше — по одной хромосоме от каждой пары. Этот набор хромосом называют гаплоидным. [c.11]

    После мейоза из диплоидных соматических клеток самца Х/У получаются два типа гаплоидных зародышевых клеток, сперматозоидов. Одни из них, кроме трех других хромосом, содержат Х-хромосому. а другие — У-хромосому. Из соматических клоток самки Х/Х после ме1 юза образуются гаплоидные зародышевые клетки только одного типа, яйцеклетки. Все они содержат Х-хромосому. Поэтому пол потомства определяется тем. какого типа сперматозоид оплодотворит яйцеклетку. Так как сперматозоиды, содержащие Х-хромосому. и сперматозоиды, содержащие У-хромосому, обратуюгсч в равчыч количествах, то в потомстве самцы и самки возникают с одинаковой частотой. [c.27]

    Если число хромосом в гамете обозначить буквой N, то число хромосом в зиготе будет равно 2iV, по половине от каждой из гамет. Если зигота делится митотически, то в каждой из двух дочерних клеток количество хромосом составит 2N. В процессе развития эти клетки делятся снова и снова, и каждая из клеток многоклеточного организма содержит по 2N хромосом. Организм продуцирует также гаметы, по они возникают в результате мейоза, и каждая из них содержит лишь по N хромосом. Когда две гаметы при оплодотворении сливаются, восстанавливается число 2N, характерное для данного вида организмов и сохраняющееся из поколения в поколение. Число хромосом в клетках различных эукариот может быть весьма различным. У некоторых видов хромосомное число равно двум у других оно может достигать нескольких сотен (табл. 1.1). Клетки с двойным набором хромосом, т.е. соматические клетки, мы будем называть диплоидными клетки с одинарным набором хромосом, т.е. гаметы, называются гаплоидными. [c.22]

    Одни из фундаментальных законов генетики гласит, что оба родителя вносят равный вклад в генетическую конституцию потомства, поскольку одни полный набор генов потомок получает от матери, а другой - от отца. Таким образом, когда из одной диплоидной клетки путем мейоза образуются четыре гаплоидные (разд. 15.2.1), в каждой из этих клеток ровно половину всех геиов должны составлять материнские гены, а другую половину - отцовские. Проверить справедливость этого утверждеиия для сложного организма в частности организма человека, разумеется, невозможно. К счастью, существуют и такие организмы, например грибы, у которых можно выделить и подвергнуть анализу все четыре дочерние клетки, образовавшиеся в результате мейоза из одной-единственной клетки. Подобный анализ показал, что из строгих генетических правил есть исключеиия. Иногда мейоз дает три копии материнского варианта (аллеля) данного гена и лишь одну копию отцовского аллеля, что свидетельствует о превращении одной из двух копий отцовского аллеля в копию материнского аллеля. Этот феномен получил название конверсии генов. Часто конверсия генов бывает связана с общей генетической рекомбинацией, и возможно, это явление играет немаловажную роль в эволюции некоторых генов (см. разд. 10.5.2). Полагают, что конверсия генов представляет собой прямое следствие действия двух механизмов -общей генетической рекомбинации и репарации ДНК. [c.309]

Рис. 13-17 Жизненные циклы почкующихся дрожжей (Sa haromy es erevisiae) и делящихся дрожжей (S hizosa haromy esротЪе) Доли жизненного цикла, проводимые в гаплоидной и в диплоидной фазе, меняются от вида к виду и в зависимости от условий среды. При обилии пищи нормальные разновидности дикого типа почкующихся дрожжей размножаются как диплоидные клетки с продолжительностью жизненного цикла около двух часов. При голодании же они претерпевают мейоз с образованием гаплоидных спор, которые в благоприятных условиях прорастают, превращаясь в гаплоидные клетки. Эти клетки в зависимости от условий среды и генотипа либо делятся, либо сливаются (конъюгируют) в фазе Gi, вновь образуя диплоидные клетки. Наоборот, делящиеся дрожжи обычно размножаются в гаплоидном состоянии при недостатке пищи гаплоидные клетки сливаются с образованием диплоидных клеток, которые быстро проходят мейоз и споруляцию с восстановлением гаплоидной фазы. Наиболее широко используемые лабораторные штаммы почкующихся дрожжей - это мутанты, которые, Рис. 13-17 <a href="/info/97687">Жизненные циклы</a> почкующихся дрожжей (Sa haromy es erevisiae) и делящихся дрожжей (S hizosa haromy esротЪе) Доли <a href="/info/97687">жизненного цикла</a>, проводимые в гаплоидной и в <a href="/info/509388">диплоидной фазе</a>, меняются от вида к виду и в зависимости от <a href="/info/400180">условий среды</a>. При обилии пищи нормальные разновидности <a href="/info/700379">дикого типа</a> почкующихся дрожжей размножаются как <a href="/info/99342">диплоидные клетки</a> с продолжительностью <a href="/info/97687">жизненного цикла</a> около <a href="/info/1696521">двух</a> часов. При голодании же они претерпевают мейоз с <a href="/info/98257">образованием гаплоидных</a> спор, которые в благоприятных условиях прорастают, превращаясь в <a href="/info/32981">гаплоидные клетки</a>. Эти клетки в зависимости от <a href="/info/400180">условий среды</a> и генотипа либо делятся, либо сливаются (конъюгируют) в фазе Gi, <a href="/info/295768">вновь образуя</a> <a href="/info/99342">диплоидные клетки</a>. Наоборот, делящиеся дрожжи обычно размножаются в <a href="/info/1324679">гаплоидном состоянии</a> при недостатке пищи <a href="/info/32981">гаплоидные клетки</a> сливаются с образованием диплоидных клеток, которые быстро проходят мейоз и споруляцию с восстановлением гаплоидной фазы. Наиболее широко используемые лабораторные штаммы почкующихся дрожжей - это мутанты, которые,
    О том. как клетки чувствуют свою величину, мало что известно, хотя многие данные указывают на то. что какой-то механизм лля этого существует. Например, если ) растущей гигантской амебы Amoeba proteus многократно отрезать часть цитоплазмы, не позволяя таким клеткам достичь нормальных размеров, то она не будет делиться даже на протяжении нескольких недель, несмотря на энергичный рост, тогда как контрольная клетка делится примерно раз в сутки. Возможный намек на го, как клетка ощущает свои размеры, содержится в том факте, что величина эукариотической клетки обычно пропорциональна ее плоидности диплоидная клетка в два раза больше гаплоидной, а тетраплоидная в два раза больше диплоидной (см. рис. 13-40 и 13-41). Можно предположить, что решающую роль играет отношение клеточного объема к числу копий какого-то гена (или набора генов) или к общему количеству ДНК (а не отношение, скажем, объема клетки к ее поверхности). Например, некая растворимая молекула М (допустим, какая-то РНК) могла бы непрерывно синтезироваться ДНК-зависимым способом если М нестабильна с постоянным периодом полужизни, то общее количество М в каждой клетке будет постоянным и будет находиться в определенном соотношении с количеством ДНК. Но мере увеличения объема клетки концентрация М будет снижаться падение концентрации ниже некоторого критического уровня могло бы быть сигналом к прохождению точки старта. [c.412]

Рис. 15-3. Эта схема показывает, как размножаются в диплоидной фазе клетки высших эукариот, образуя многоклеточный оргагшзм, в котором гаплоидными становятся только гаметы. Напротив, у некоторых низших эукариот размножаются именно гаплоидные клетки, а единственной диплоидной клеткой является зигота, которая существует очень недолго носле оплодотворегшя Гаплоидные клетки выделены цветом Рис. 15-3. Эта схема показывает, как размножаются в <a href="/info/509388">диплоидной фазе</a> клетки высших эукариот, образуя многоклеточный оргагшзм, в котором гаплоидными становятся только гаметы. Напротив, у некоторых низших эукариот размножаются именно <a href="/info/32981">гаплоидные клетки</a>, а единственной <a href="/info/99342">диплоидной клеткой</a> является зигота, которая существует очень недолго носле оплодотворегшя <a href="/info/32981">Гаплоидные клетки</a> выделены цветом
    Полный двойной набор хромосом называют диплоидным (2 п), а набор, получаемый от каждого из родителей через половые клетки, — гаплоидным (п). Все клетки высшего растения, за исключением гаплоидных половых, как минимум диплоидны. Гаплоидные половые клетки находятся преимущественно в зрелых пыльцевых зернах и в зародышевом мешке семязачатка. В жизненном цикле растения гаплоидный набор" получается из диплоидного в результате редукционного деления, или мейоза (см. стр. 34), протекающего в материнских клетках микро- и мегаспор, находящихся соответственно в пыльниках и семязачатке цветка. Возникшие таким путем гаплоидные клетки де лятся и дают начало мужским и женским гаметофитам, в которых в конце концов и образуются половые клетки, или гаметы, т. е. спермии и яйцеклетки. Когда — при половом размножении— женские и мужские гаметы сливаются в зиготу, происходит восстановление диплоидного числа хромосом, свойственного спорофиту. Прослеживая изменения в числе хромосом и в содержании ДНК, мы видим, что в цветковом растении совершается цикл, в котором диплоидия сменяется гаплоидией, а последующее слияние гаплоидных клеток разного генетического происхождения в новый диплоидный организм порождает новые комбинации генетических признаков. [c.33]


Смотреть страницы где упоминается термин Гаплоидные и диплоидные клетки: [c.25]    [c.68]    [c.69]    [c.23]    [c.209]    [c.63]    [c.6]    [c.25]    [c.28]    [c.158]    [c.330]    [c.495]    [c.201]    [c.14]    [c.15]    [c.16]    [c.23]    [c.222]   
Смотреть главы в:

Биохимия ТОМ 1 -> Гаплоидные и диплоидные клетки

Биология Том3 Изд3 -> Гаплоидные и диплоидные клетки




ПОИСК





Смотрите так же термины и статьи:

Ядра спермиев гаплоидны, однако процессом дифференцировки этих клеток управляет диплоидный геном



© 2025 chem21.info Реклама на сайте