Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Разделение молекул по растворимости

    Селективность действия мембран для обратного осмоса зависит от коэффициентов диффузии и растворимости компонентов раствора в материале мембраны, а также от электрических сил, формы и размера молекул, концентрации, температуры. Для перегородок селективность действия не имеет значения к ним предъявляется требование полного разделения суспензии с получением чистого фильтрата. [c.83]


    Высаливание лежит в основе одного из методов фракционирования высокомолекулярных веществ, поскольку способность этих соединений выделяться из раствора весьма сильно зависит от их химической природы и резко возрастает с увеличением молекулярного веса. Особенно широко применяется фракционирование с помощью высаливания для разделения белков. При этом высаливание часто сочетают с введением в систему нерастворителя (например, спирта) и охлаждением раствора. Высаливание белков целесообразно проводить при значении pH, близком к изоэлектрической точке, так как при значении pH, большем или меньшем изоэлектрической точки, возрастает заряд и гидратация белковых молекул и увеличивается их растворимость. [c.466]

    Наоборот, на растворимость осадков, являющихся солями слабых кислот, кислотность раствора оказывает очень существенное влияние Так, ионы jO "" могут взаимодействовать с ионами кальция, образуя осадок щавелевокислого кальция. HoBbi O " могут реагировать такл е с ионами Н , образуя молекулы слабой щавелевой кислоты. Образование или растворение щавелевокислого кальция, степень осаждения кальция и другие характеристики равновесия зависят от концентраций реагирующих веществ, а также от величин константы диссоциации кислоты и произведения растворимости осадка. Величины произведений растворимости углекислого бария и щавелевокислого бария почти одинаковы. Однако угольная кислота слабее щавелевой, т. е. анион СО при прочих равных условиях связывается с ионами водорода сильнее, чем анион С О . Поэтому ВаСО, легко растворяется в уксусной кислоте, а растворимость ВаС О при тех же условиях почти не изменяется. Если два осадка являются солями одной и той же кислоты, например сульфидами, то при прочих равных условиях растворимость в кислотах зависит от величины произведения растворимости. Известно, что путем изменения концентрации ионов водорода достигаются многочисленные разделения катионов в виде сульфидов, фосфатов и других соединений металлов с анионами слабых неорганических и органических кислот. Таким образом, значение кислотности раствора для осаждения и разделения металлов очень велико. [c.39]

    Фракционирование методом гель-проникающей хроматографии (ГПХ) основано на применении принципа молекулярного сита, т. е. разделение молекул происходит только по размерам и не зависит от химической природы компонентов. Это свойство отличает метод ГПХ от всех других методов, основанных на растворимости полимеров. Возможность разделения только по размерам особенно важна для сополимеров и полимерных веществ биологического происхождения (белков, нуклеиновых кислот и др.). [c.96]


    Между асфальтенами и смолами трудно провести четкую границу в силу близости их элементного состава и сходства в структуре углеродного скелета и их справедливо относят к одной группе высокомолекулярных веществ — неуглеводородным компонентам. В составе же нефтяных высокомолекулярных полициклических углеводородов и смол имеется принципиальное различие — последние являются гетероатомными производными углеводородов. Методы разделения асфальтенов и смол основаны на различии в размерах мх молекул, а также обусловленном последним обстоятельство различии некоторых физических свойств (растворимость, адсорбционная способность, склонность к ассоциации и др.). [c.42]

    Растворимость вещества определяется равновесием между чистым веществом и его раствором. Показано, что такое равновесие обусловлено ке только взаимодействием растворителя и растворенного вещества, но и силами межмолекулярных взаимодействий в чистом веществе. Эти силы ие зависят от полярности или других свойств растворителя, и их относительная величина может быть получена из сравнения температур плавления и кипения. Это связано с тем, что процессы плавления твердого вещества или кипения жидкости приводят к разделению молекул, в некоторой степени сходному с отделением молекул, наблюдаемым при растворении. [c.123]

    Оценка чистоты. — Шведские химики Сведберг и Тизелиус внесли большой вклад в развитие химии белка разработкой аналитических методов, чрезвычайно удобных для характеристики этих, высокомолекулярных соединений. Метод ультрацентрифугирования Сведберга служит для определения молекулярного веса. При вращении с очень большой скоростью ячейки, содержащей раствор белка, молекулы белка под действием центробежных сил движутся от центра со-скоростью, зависящей от величины молекулярного веса. Специальная оптическая система дает возможность наблюдать и фотографировать ячейку во время центрифугирования. Молекулярный вес может быть, найден либо из определения седиментационного равновесия, либо по-скорости седиментации- Хотя теоретически первый метод точнее, для достижения равновесия требуется длительное время, и поэтому более точные значения получают, исходя из определения скорости седиментации. При применении ультрацентрифуги можно установить также гомогенность молекул (по величине и форме). Тизелиус предложил (1937) электрофоретический метод разделения молекул белка в электрическом поле молекула белка движется со скоростью, определяющейся величиной молекулы, ее формой, количеством и типом ионизированных групп. Материал, кажущийся гомогенным по растворимости, может содержать компоненты, отличающиеся по электрофоретической подвижности. Жестким критерием чистоты является профиль кривой распределения, получаемой при противоточном распределении молекул (Крейг, см. 31.29). [c.674]

    Фракционирование химически неоднородных полимерных образцов можно в принципе проводить с помощью любого из хорошо известных методов, основанных на растворимости и описанных в других главах книги. Растворимость химически однородного образца определяется только молекулярным весом. Однако растворимость химически неоднородного образца зависит как от молекулярного веса, так и от химического строения молекул. В процессе фракционирования химически неоднородного образца по растворимости отдельных его молекул влияния молекулярного веса и химического строения накладываются друг на друга. Если образец обладает резко выраженной химической неоднородностью, то разделение молекул в процессе фракционирования осуществляется не в соответствии с молекулярными весами. Влияние изменяющегося химического состава молекул на растворимость превышает влияние, обусловленное молекулярным весом. В этом случае обе характеристики изменяются скачкообразно в процессе фракционирования. Примеры подобного рода будут приведены ниже. [c.295]

    Вопрос об истинных значениях массы молекул асфальтенов, или об их молекулярном весе, имеет принципиальное научное значение для понимания важнейших физических свойств самых сложных по химическому составу и наиболее высокомолекуляр-ных по размерам молекул неуглеводородных составляющих нефти. Не менее важное значение имеет и знание истинных величин их молекулярных весов для решения вопроса о химической структуре и физическом строении этих твердых аморфных компонентов нефти. Неудивительно поэтому, что разработкой методов определения молекулярных весов асфальтенов и установлением связи между размерами их молекул и рядом фундаментальных физических их свойств, прежде всего реологическими свойствами и растворимостью, с образованием как истинных, так и коллоидных растворов, занимались многие исследователи на протяжении более 50 лет. Накоплен большой экспериментальный материал по изучению молекулярных весов смол и асфальтенов, выделенных из сырых нефтей, из тяжелых остатков продуктов переработки, из природных асфальтов. Если для нефтяных смол нет существенного расхождения в значениях молекулярных весов, полученных разными исследователями (обычно значения молекулярных весов лежат в пределах 400—1200), то для асфальтенов уже можно наблюдать большие расхождения. Данные, полученные различными методами, лежат в весьма широких пределах от 2000—3000 до 240 000—300000. Совершенно ясно, что самые низкие значения должны быть отнесены к собственно молекулам асфальтенов, т. е. истинным молекулярным их величинам. Значения же молекулярных весов в пределах от 10000 до 300 ООО соответствуют надмолекулярным частицам асфальтенов, т. е. ассоциатам молекул асфальтенов различной степени сложности. Значения молекулярных весов этих ассоциатов, или мицелл, зависят от многих факторов, но прежде всего от растворяющей способности и избирательности применяемых растворителей и концентрации асфальтенов в растворах. Весьма существенно на значениях найденных молекулярных весов частиц сказываются чистота и степень разделения по размерам молекул [c.69]


    Фракционированная экстракция основывается на том же самом принципе противоточно-перекрестного движения молекул целевого компонента между двумя фазами, что и фракционированная дистилляция. Между этими процессами можно провести далеко идущую аналогию [33]. В обоих процессах мы имеем дело с двумя фазами при дистилляции—с жидкой и парообразной, при экстракции—с двумя жидкими фазами, которые образуют не смешивающиеся друг с другом растворители. Обе фазы совершают замкнутые циклы. В состоянии равновесия компоненты исходного раствора присутствуют в обеих фазах в разных концентрациях. При дистилляции это происходит вследствие различных давлений пара компонентов, при экстракции—вследствие неодинаковой растворимости. Фазы направляются противотоком и во время движения относительно друг друга приводятся в соприкосновение либо ступенчато, либо непрерывно. Во время контакта фаз происходит—в поперечном направлении к основному движению—обмен компонентами, доходящий в соответствующих условиях до состояния равновесия или приближающийся к нему. Применяя соответствующее число ступеней или длину пути, можно добиться любой глубины обмена, а вместе с ним и разделения компонентов исходного раствора. [c.189]

    Вследствиё этого вода легко вклинивается между молекулами метилового спирта, чем можно объяснить его хорошую растворимость в воде. Хорошо растворяется в воде также и этиловый спирт. Такое легкое разделение молекул спирта молекулами во- [c.71]

    Наоборот, если энергия взаимодействия молекул АиА или В и В больше, чем А и В, то одинаковые молекулы каждого компонента предпочтительно будут связываться между собой и растворимость понизится. Это часто наблюдается при значительной полярности одного из компонентов раствора. Этим, например, можно объяснить плохую растворимость полярных молекул НС1 в бензоле. Этим же объясняется небольшая растворимость неполярных и малополярных веществ в полярном растворителе, например в воде. Как известно, положительный заряд в молекулах воды сосредоточен на атомах водорода, а отрицательный — на орбиталях двух электронных пар атома кислорода это приводит к значительному разделению зарядов, что вызывает интенсивную ассоциацию воды (за счет водородных связей). Поэтому притяжение неполярных молекул неэлектролита к молекулам воды будет меньше, чем притяжение молекул воды друг к другу. [c.141]

    Вследствие малой скорости диффу ши газов через непористые мембраны осуществить процесс в газовой фазе в промышленном масштабе не удалось. Поэтому практический интерес представляет лишь процесс в жидкой фазе. Разделение основано на различии в форме молекул разделяемых компонентов н растворимости их в материале мембраны. [c.79]

    Во многих случаях для разделения газовых смесей используют ректификацию в сочетании с растворением газов. Углеводороды, имеющие в своих молекулах 2—3 и более атомов углерода, очень хорошо растворяются в жидких органических веществах, например в жидких углеводородах, легких маслах. Вместо того, чтобы переводить газ в жидкое состояние путем значительного понижения температуры, пропускают газ через растворитель. Наиболее легкие газы — водород, азот, метан — проходят через растворитель, а более тяжелые углеводороды задерживаются вследствие их хорошей растворимости. После этого растворитель подвергают ректификации. [c.298]

    Разделение смесей диффузией через полимерные мембраны основано на различии в форме молекул разделяемых компонентов и их растворимости в материале мембраны [101]. Чем меньше поперечное сечение молекул, тем выше скорость диффузии — на этом основано выделение п-ксилола из смеси с другими изомерами [102], разделение нормальных и разветвленных алканов [103]. [c.67]

    Растворимые в алканах гетероатомные соединения относят к смолам. Отделение смол от высокомолекулярных полициклических углеводородов осуществляется хроматографическим путем, основываясь на их различной адсорбируемости на силикагеле. При таком разделении определенная часть ранее рассмотренных кислород-, серу- и азотсодержащих соединений оказывается в составе смол. Смолы представляют собой очень вязкие жидкости от темно-коричневого до бурого цвета, реже-гвердые аморфные вещества. Плотность смол, так же, как и асфальтенов, больше единицы, молекулярная масса от 600 до 1800. Углеродный скелет молекул смол образуется из конденсированных циклических систем, содержащих до 5-6 колец, из которых 2-4 ароматические. [c.15]

    Индукционные силы (силы Дебая) характерны для взаимодействия молекул вещества с постоянным диполем с молекулами другого вещества, не обладающими постоянным диполем. В этом случае у последних возникает наведенный диполь. Обычно энергия индукционного взаимодействия относительно мала, однако она, как правило, достаточна, чтобы обеспечить различие в растворимости, необходимое при хроматографическом разделении смеси вешеств. [c.170]

    Однако до конца XIX в. нефтеперерабатывающая промышленность еще не в состоянии была удовлетворить практические запросы (покрытие площадей и тротуаров в городах). Поэтому применялся только природный асфальт. Лишь широкое производство из нефти осветительного керосина, а затем и автомобильного бензина позволило организовать производство нефтяных битумов из тяжелых остатков, с богатым содержанием смол и асфальтенов. Широкое использование асфальта для дорожных покрытий, для производства кровельных, гидро- и электроизоляционных материалов теспо связано с развитием нефтеперерабатывающей промышленности. Основной ассортимент технических нефтяных битумов, составляющий около 3% от суммарного потребления нефти и нефтепродуктов, получают как при непосредственном использовании нефтяных гудронов, так и окислением тяжелых нефтяных остатков при 250—300° С. Масштабы и технология современной битумной промышленности, а также области применения, ассортимент и качественные показатели технических изделий из нефтяных битумов определяются потребностями и требованиями техники. Решению практических задач, связанных с производством и потреблением нефтяных битумов, подчинены научные исследования в этой области. Так как содержание смолисто-асфальтеновых веществ в нефти и получаемых из нее нефтепродуктов существенно сказывается на их технических свойствах и на глубине и направлении термических превращений, возникла практическая потребность в разработке методов количественного определения содержания смол и асфальтенов в нефтепродуктах. Поэтому первым и самым ранним этапом в развитии исследований смолисто-асфальтеновых веществ нефти в XX в. была разработка аналитических методик количественного их определения, основанных на различной растворимости и адсорбируемости. Затем наступил длительный период усовершенствования и стандартизации этих методик, что позволило осуществить удовлетворительное разделение смолисто-асфальтеновых веществ на основные их компоненты — смолы и асфальтены и в известных пределах фракционировать их, главным образом но размерам молекул. [c.91]

Таблица Приложение IV) энергетических параметров включает 32 группы. Поскольку большинство имеющихся по растворимости данных относится к интервалу температур от 283 до 313 К, то использование параметров из Приложения IV позволяет предсказывать равновесие жидкость—жидкость именно в этом температурном интервале. При расчете равновесий жидкость—жидкость появляется некоторая специфика в разделении молекул на группы. В частности, особо следует рассмотреть молекулы пропанола и изопропанола, так как системы, включающие эти компоненты, часто обладают диаграммами растворимости с выраженной солютропией. Для описания особенностей поведения этих систем молекулы пропанола и изопропанола выделяются как индивидуальные группы (группы Р1 и Р2 в Приложении IV). <a href="/info/1590698">Таблица Приложение</a> IV) энергетических параметров включает 32 группы. Поскольку большинство имеющихся по растворимости данных относится к интервалу температур от 283 до 313 К, то использование параметров из Приложения IV позволяет предсказывать <a href="/info/224290">равновесие жидкость—жидкость</a> именно в этом температурном интервале. При <a href="/info/1638804">расчете равновесий жидкость—жидкость</a> появляется некоторая специфика в разделении молекул на группы. В частности, особо следует рассмотреть молекулы <a href="/info/20455">пропанола</a> и <a href="/info/51364">изопропанола</a>, так как системы, включающие эти компоненты, часто обладают <a href="/info/78417">диаграммами растворимости</a> с выраженной <a href="/info/350838">солютропией</a>. Для описания особенностей поведения этих систем молекулы <a href="/info/20455">пропанола</a> и <a href="/info/51364">изопропанола</a> выделяются как индивидуальные группы (группы Р1 и Р2 в Приложении IV).
    Для процессов разделения методами экстрахщии и адсорбции уязвимым свойст вом, определяющим возможности разделения, является растворимость и адсорбируемость соответственно. Для образования твердых молекулярных соединений типа 1 важна химическая природа молекул, в то время Kaxi для образования твердых молекулярных соединений типа 11 и 111 важными являются природа каркаса, размеры и форма молекул вто-рох о компонента. [c.155]

    Имея в виду экспериментально наблюдавшиеся большие изотопные эффекты в растворимости тяжелой воды в жидкостях, а также в растворимости жидких и твердых веществ в тяжелой воде, некоторые исследователи ожидали, что в ряде равновесных бинарных систем вода — органическая жидкость или вода — кристаллогидрат будет происходить значительное разделение молекул DgO, HDO и HgO. Первые соответствующие опыты были проведены с водой, содержавшей 1—4 ат. % D, и кристаллогидратами NaaSOi-lOaq [911] и Sr la-6aq [912] при 0° С. Оказалось, что при равновесии содержание дейтерия в водном слое и в кристаллизационной воде в пределах 0,01/6 одинаково. В работе [912] не было обнаружено разделения водорода и дейтерия в системе вода — диэтиловый эфир (вода каждой из фаз содержала 2,33 ат. % D). Из работы [914] следует, что при гидратации ионообменных смол КУ-1 и КУ-2 в разбавленной тяжелой воде равновесная концентрация дейтерия в водной фазе несколько больше, чем в гидратационной воде. [c.274]

    Экстракция органическими растворителями (сольвентная экстракция) — один из важнейших способов лабораторного и промышленного выделения ГАС из углеводородных систем. В качестве растворителей, позволяющих отделять ГАС от углеводородов, испытано большое число полярных органических соединений (фенолы, нитробензол, нитрофенол, анилин, фурфурол, низшие кетоны и спирты, ацетофенон, ацетил-фуран, ацетилтиофен, диметилформамид, ацетонитрил, диметил-сульфоксид и др. [58—63]), но ни одно из них не дает четкого разделения, и полученные экстракты, как правило, содержат значительную долю полициклоароматических углеводородов. Для повышения эффективности разделения экстракция часто проводится в системе, содержащей два сольвента, не смешивающиеся между собой или обладающие ограниченной взаимной растворимостью пропан и фенол [64], циклогексан и диметилформамид [65] и т. д. Экстракционная способность полярных растворителей по отношению к отдельным группам нефтяных ГАС может существенно различаться. Так, диметилформамид экстрагирует из масляных дистиллятов карбоновые кислоты в 7—8 раз эффективнее, чем сернистые соединения [66 ]. Однако практически использовать эти различия для четкого фракционирования ГАС на отдельные типы чрезвычайно трудно, в связи с чем методы сольвентной экстракции обычно служат средством отделения суммы ГАС или грубого разделения высокомолекулярных ГАС в соответствии со средней полярностью их молекул (не по функциональному признаку) [67-69]. [c.10]

    Рассмотрев термодинамику двухфазной трехкомпонентной системы органическое вещество — обычная вода — тяжелая вода, каждая фаза которой содержит все три компонента, Линдерстром-Ланг [929] показал, что взаимная растворимость тяжелой воды и органического вещества зависит от содержания в системе обычной воды и, наоборот, содержание в ней тяже--лой воды влияет на растворимость обычной. Учет зависимости химического потенциала воды в слое органического вещества от общей концентрации воды в системе приводит к сильному снижению коэффициента изотопного разделения, рассчитанного исходя только из различия растворимости чистых DaO иНаО. Это и объясняет то, что, согласно экснериментальным данным, разделение молекул D O, HDO и НзО между равновесными фазами, содержащими воду, мало по сравнению с изотопным эффектом в растворимости тяжелой и обычной воды в соответствующем органическом веществе. [c.274]

    Молекулярно-массовое распределение и реологические свойства этих материалов также представляют значительный интерес. Поскольку большие молекулы в процессе термообработки пека переходят в мезофазу, то можно ожидать существенной разницы в молекулярно-массовом распределении и вязкости изотропной и анизотропной фаз. Однако, молекулярно-массовое распределение в прямом смысле этого слова неизвестно для рассматриваемых материалов. Из-за кажущегося отсутствия растворителей для высокомолекулярной части ароматических пеков, обычно первичное разделение молекул по размерам ведут экстракционным методом. Например, определение растворимой в пиридине доли материала стало рутинным анализом и показано [14], что средневесовая молекулярная масса [c.195]

    Вследствие этого, вода легко вклинивается между молекулами метилового спирта, чем можно объяснить его хорошую растворимость в воде. Хорошо растворяется в воде также и этиловый спирт. Такое легкое разделение молекул спирта молекулами воды в данном случае объясняется еще тем, что взаимодействие между группами СНз и СгНб соседних молекул относительно мало. По мере увеличения в спиртах углеводородного радикала становятся более заметными силы, связывающие их между собой. При достаточно большой [c.43]

    Разнообразные по своей природе периферические заместители в молекулах производных тетрапиррола определяют как стабильность этих соединений, так и выбор хроматографического метода, наиболее подходящего для их очистки. В случае же металлосодержащих производных необходимо учитывать еще и дополнительные факторы, поскольку образование комплекса сопряжено с изменением суммарного заряда молекулы, растворимости соединения и, следовательно, его стабильности и характера взаимодействия с сорбентом и подвижной фазой. Такое разнообразие химических и физических свойств не позволяет не только сделать какие-либо обобщения относительно предпочтительного метода хроматографирования порфиринов и родственных им тетрапирролов, но и предложить простую классификацию самих этих соединений. В силу вышеизложенного мы предпочли разбить все рассматриваемые соединения на две основные группы (гидрофобные и гидрофильные) и по отдельности, в соответствии со структурой хромофоров, обсудить различные методы их разделения. Тем не менее представляется возможным сделать некоторые замечания общего характера, касающиеся, в частности, стабильности и способов обнаружения производных я-етралиррола. [c.202]

    НИЯ. Они хорошо растворимы в воде, поскольку вода является полярным соединением, которое разрушает связи между ионами, гидратируя эти ионы. Гидратированные ионы проводят электрический ток, что позволяет отнести неорганичесхше соединения к электролитам. Органические соединения обычно представляют собой полярные или неполярные ковалентные соединения, состоящие из молекул, которые удерживаются относительно слабыми силами ковалентного характера. Поскольку такое межмолекулярное притяжение невелико, органические соединения обычно летучи и обладают низкими точками плавления. Обычно они нерастворимы в воде, так как вода в данном случае не обнаруживает тенденции к разделению молекул на ионы. Они легко смешиваются с другими органическими соединениями и часто оказываются растворимыми в органических растворителях. Органические соединения, поскольку они не образуют ионов в растворе, относятся к классу неэлектролитов. Находясь в растворе, они обычно не проводят электрический ток. Неорганические соединения реагируют с большой скоростью, тогда как органические реакпии относительно [c.203]

    Опыты на клетках яичника китайского хомячка (СНО) привели к предположению о компартментации двух популяций белка NS, различающихся на 10% по степени фосфорилирования, причем с РНП ассоциирована популяция с меньшим уровнем фосфорилирования [6]. Вместе с тем в клетках ВПК такой компартментации не наблюдали. Для разделения молекул NS использовали ионообменную хроматографию. Оказалось, что транскрипция in vitro идет только в присутствии более фосфорилированных молекул. Белок NS, выделенный из растворимой цитоплазматической фракции, по своей подвижности в геле отличается от вирионной формы малой степенью фосфорилирования и неспособностью поддерживать транскрипцию в реконструированных системах. Хотя высокий уровень фосфорилирования коррелирует со способностью поддерживать транскрипцию, неясно, существенны ли все или некоторые из фосфорилированных остатков для активности белка NS, или же эта корреляция случайна, [c.435]

    Недавняя работа Сперлинга [96] представляет собой первую попытку разрешения этой трудной задачи. Сульфокислоты разделялись на группы на основании различной их растворимости различные фракции их затем десульфировались методом гидролиза водой с получением исходных органических молекул эти последние на основании различной растворимости в свою очередь подвергались разделению на углеводороды и окисленные соединения (нейтральные смолы и асфальтены). Углеводородные фракции изучались по методу Уотермана с целью общего Определения структуры. [c.537]

    Кинетические данные показывают, что аналогично влияет температура на длительность коагуляции. Из данных по зависимости длительности разделения фаз от температуры могут быть определены пороговые температуры коагуляции Гпор, и Тпор,, которые, так же как Спор, и Спор > являются характерными параметрами процесса коагуляции для данного типа латекса [45]. Если при введении электролита в латексные системы происходит резкое уменьшение сил электростатического отталкивания между частицами за счет снижения -потенциала частиц и подавления диссоциации адсорбированных молекул ПАВ (и изменения растворимости молекул ПАВ), то под влиянием теплового воздействия происходит ослабление водородных связей молекул воды и ПАВ адсорбционного слоя, что также способствует гидрофобизации системы и понижению ее устойчивости. В интервале времени тг — ть по-видимому, преодолевается энергетический барьер, препятствующий коагуляции системы и разделению фаз. При проведении коагуляции в условиях, при которых концентрация электролита Сэл Спорг и [c.258]

    Появились новые способы разделения смесей, основанные на применении ч овершенно новых принципов и обладающие беспрецедентно высокой эффективностью. Таковы, например, разнообразные хроматографические методы, с помощью которых можно разделять соединения, используя очень малые различия в их строении и свойствах (в адсорбируемости, растворимости, кислотности или основности, способности к образованию клатратов или комплексов, размерах и форме молекул). [c.4]

    Исключение представляют насыщенные полифторсодержащие соединения, отличающиеся от обычных полярных растворителей тем, что значения параметров растворимости их молекул ниже по сравнению как с аренами, так и с насыщенными углеводородами. Поэтому в соответствии с правилом растворимости Гильдебранда — Семенченко степень неидеальности углеводородов в перфторалифатических растворителях изменяется в ряду, противоположном указанному выше. Не случайно в работе [5] выделена ректификация в присутствии фторорганических соединений как особый метод разделения углеводородов в присутствии этих соединений отгоняются в виде азеотропных смесей преимущественно арены. [c.56]

    Из приведенного сравнения видно, что отличительные признаки смол заключаются в растворимости в алканах (а также в углеводородах нефтн), возможности разделения на узкие фракции однотипных групп веществ (например, моноциклические, бициклические и др.), малая степень ароматичности, поЛидисперсность и отсутствие структуры. Смолы представляют собой вещества, занимающие область между углеводородными маслами и асфаль-тенами. Именно благодаря полидисперсности, широкому интервалу молекулярных масс, отсутствию относительно сформированной молекулы,, небольшому размеру и малой степени ароматичности, межмолекулярные взаимодействия у них не приобретают решающего значения. Поэтому их можно разделить на фракции одноптипиых веществ. Вследствие этого в книге [242] предложены критерии, позволяющие более четко определить понятое асфальтены и смолы. К смолам можно отнести растворимые в углеводородах нефти высокомолекулярные гетероатомные полидисперсные бесструктурные соединения нефти, которые можно разделить на узкие фракции однотипных соединений. Начиная с определенного размера и степени ароматичности относительно сформированных полициклических молекул, решающим фактором становится меж-молекулярное взаимодействие, приводящее к формированию структуры (в известной степени сравнимой с процессом кристаллизации у полимеров), степень упорядоченности которой зависит от их химической природы. [c.269]

    Вследствие аддитивности дисперсионного взаимодействия с ростом молекуляриой массы полимера увеличивается притяжение между цепями в молекулах и между молекулами. Увеличение затрат энергии на расталкивание макромолекул с возрастанием их молекулярной массы объясняет уменьшение способности к набуханию и растворению в одном и том же растворителе полимеров одного полимергомологического ряда. Наиример, целлюлоза со-, держит большое число гидроксильных груип, но в воде не растворяется, а только набухает вследствие очень большой молекулярной массы и жесткости цепей. Различная растворимость полимергомо-логов используется для разделения их на фракции. [c.319]

    Определение молекулярного,. а тесно связано с растворимостью вещества. Его определяют в разбавленных растворах. Мольная доля растворенного вещества в этом случае так мала, что теплота смешения приближается к нулю. Когда теплота смешения велика, растворимость зависит от температуры и, следовательно, молекулярный вес может изменяться при изменении температуры, при которой производится определение. Асфальтены ведут себя именно таким образом. Если они находятся в контакте с избытком бензола, то устанавливается равновесие между концентркрованным слоем набухших асфальтенов и слоем разбавленного раствора асфальтенов в бензоле. Содержат ли оба слоя асфальтены одного типа — неизвестно, но логично предположить, что в слое разбавленного раствора содержится большее количество более растворимых асфальтенов, чем в набухшем слое. При возрастании температуры концентрации асфальтенов в обоих слоях начинают сближаться, и это сближение продолжается до тех пор, пока не образуется однородный раствор. Температура его образования и есть температура взаимного растворения. При охлаждении такой раствор не разделяется на два слоя, но благодаря взаимодействию между компонентами образуется суспензия менее растворимой части асфальтенов в растворе более растворимых фракций. Разделение асфальтенов на более и менее растворимые фракции зависит от соотношения углерод водород в их молекуле, так как при увеличении этого соотношения их растворимость ухудшается. [c.10]

    Для очистки и разделения нефтяного сырья широко используют процессы, основанные на растворимости компонентов сырья в различных растворителях. Растворение веществ А в веществе В возможно лишь в том случае, когда межмолекулярные силы притяжения / аа и Fbb, осуществляющие связь между частицами чистых веществ А и В, преодолеваются силами Fab, которые появляются при растворении этих веществ. Если Faa и Fbb значительно больше Fab, то молекулярного распределения не происходит, т. е. данные вещества не растворимы друг в друге. Таюим образом, для растворения одного вещества в другом необходимо достаточно сильное притяжение между молекулами растворяемого вещества и растворителя. [c.70]

    Фуллерены С60 являются аллотропной формой чистого углерода со сферической молекулярной структурой в отличие от полимерных сеток алмаза и графита. В настоящее время известны многочисленные свойства фуллерена С60, многие из которых являются уникальными. Среди практически перспективных путей промышленного применения фуллеренов можно отметить синтез различных водорастворимых соединений С60, обладающих ценными фармакологическими свойствами синтез фуллеренпривитых полимеров, являющихся высококачественными смазочными и антифрикционными материалами. Процессы синтеза данных соединений осуществляют в растворах с использованием различных органических растворителей. Для выбора оптимальных условий синтеза, проводимого в растворах, приводящего к максимальным выходам целевого продукта химической реакции, а также для проведения процессов с максимальной скоростью и минимальными материальными и энергетическими затратами, необходимо знать особенности поведения фуллерена С60 в растворах различных растворителей и взаимодействие его с растворителем. Данные по структуре и фазообразованию фуллерена С60 в растворах отсутствуют. Кроме того, свойство растворимости фуллеренов в органических растворителях широко используют в процессах выделения их из фуллеренсодержащей сажи на стадии синтеза и разделения различных видов фуллеренов. Актуальность исследований свойств растворенного фуллерена С60 имеет также фундаментальный аспект, связанный с необычной структурой данной молекулы, являющейся объемным аналогом ароматических соединений с высокой плотностью я-электронов, находящихся в сферическом пространстве фуллерена. [c.6]

    Если в качестве неподвижной фазы взять мелкоизмельченный сорбент и наполнить им трубку (стеклянную или металлическую), а движение подвижной фазы (жидкости или газа) осуществлять за счет перепада давления на концах этой трубки, то последняя будет представлять собой хроматографическую колонку, называемую так по аналогии с ректификационной колонкой для дистилляционного разделения. Разделяемая смесь веществ вместе с потоком подвижной фазы поступает в хроматографическую колонку. При контакте, с поверхностью неподвижной фазы каждый из компонентов разделяемой смеси распределяется между подвижной и неподвижной фазами в соответствии с его свойствами, например адсорбируемо-стью или растворимостью. Вследствие непрерывного движения подвижной фазы лишь часть распределяющегося компонента успевает вступить во взаимодействие с неподвижной фазой. Другая же егО часть продвигается дальше в направлении потока и вступает всу взаимодействие с другим участком поверхности неподвижной фазы. Поэтому распределение вещества между подвижной и неподвижной фазами происходит на небольшом слое неподвижной фазы толькО при достаточно медленном движении подвижной фазы. Поглощенные неподвижной фазой компоненты смеси не участвуют в перемещении подвижной фазы до тех пор, пока они не десорбируются и не будут снова перенесены в подвижную фазу. Поэтому каждому из них для прохождения всего слоя неподвижной фазы в колонке потребуется большее время, чем для молекул подвижной фазы. Если молекулы разных компонентов разделяемой смеси обладают различной степенью сродства к неподвижной фазе (различной адсор-бируемостью или растворимостью), то время пребывания их в этой фазе, а следовательно, и средняя скорость передвижения по колонке различны. При достаточной длине колонки это различие может привести к полному разделению смеси на составляющие ее компоненты. [c.8]

    Фракционирование растворением основано на зависимости растворимости полимергомологов от размера молекул чем меньше молекула, тем лучше растворяется гомолог. Практически для разделения на фракции высокомолекулярное вещество обрабатывают сначала жидкостью, растворяющей низкомолекулярные члены полимергомологического ряда, затем оставшийся продукт обрабатывают жидкостью, растворяющей уже более высокомолекулярные фракции, и т, д. Часто вместо того, чтобы пользоваться различными жидкостями для экстрагирования, применяют смеси двух жидкостей, из которых одна служит хорошим растворителем для всех фракций, а другая яв.1яется для них нерастворителем. Изменяя в смесях, которыми последовательно проводится экстрагирование, соотнощение [c.423]


Смотреть страницы где упоминается термин Разделение молекул по растворимости: [c.690]    [c.182]    [c.409]    [c.365]    [c.543]    [c.177]    [c.7]    [c.155]    [c.132]   
Биохимия Том 3 (1980) -- [ c.159 ]




ПОИСК







© 2025 chem21.info Реклама на сайте