Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Водородные связи и гидрофобные взаимодействия

    В развернутой полипептидной цепи с помощью водородных связей и гидрофобных взаимодействий образуются отдельные участки вторичной структуры, служащие как бы затравками для формирования полных вторичных и супервторичных структур. [c.36]

    У ряда белковых соединений несколько сложных полипептидных цепей белка могут агрегироваться вместе, создавая более сложный комплекс определённого строения, называемый четвертичной структурой белка. Каждая полипептидная цепь, образующая четвертичную структуру, называется субъединицей и сохраняет свойственные ей первичную, вторичную и третичную структуры, однако биологическая роль комплекса в целом отличается от биологической роли субъединиц вне комплекса. Фиксация четвертичной структуры обеспечивается водородными связями и гидрофобными взаимодействиями между субъединицами. Например, молекула гемоглобина - белка с четвертичной структурой - состоит из четырёх субъединиц, окружающих гем (простетическую железосодержащую группу - железопорфирин) между субъединицами нет ковалентной СВЯЗИ, однако тетрамер представляет собой единое целое, в котором субъединицы тесно связаны и ведут себя в растворе как одна молекула. Наличие четвертичной структуры характерно также для других металлопротеинов и для иммуноглобулинов. При формировании четвертичной структуры белка образующийся комплекс может содержать, помимо субъединиц полипептидной структуры, и субъединицы иной полимерной природы, а также соединения других классов. [c.71]


    Водородные связи и гидрофобные взаимодействия [c.76]

Рис. 24-4. Активация зимогенов пепсина, трипсина и химотрипсина. На диаграммах показаны участки зимогенов, подвергающиеся про-теохшзу, в результате которого высвобождаются активные ферменты (показаны красным). Те фрагменты полипептидных цепей зимогенов, которые отщепляются или вырезаются, показаны черным. Обратите внимание, что химотрипсин состоит из трех полипептидных цепей, ковалентно связанных друг с другом двумя дисульфидными связями и нековалентно-за счет водородных связей и гидрофобных взаимодействий (дополнение 9-4). Рис. 24-4. <a href="/info/1176064">Активация зимогенов</a> пепсина, трипсина и химотрипсина. На диаграммах показаны участки зимогенов, подвергающиеся про-теохшзу, в результате которого высвобождаются <a href="/info/5968">активные ферменты</a> (показаны красным). Те фрагменты <a href="/info/31816">полипептидных цепей</a> зимогенов, которые отщепляются или вырезаются, показаны черным. Обратите внимание, что химотрипсин состоит из трех <a href="/info/31816">полипептидных цепей</a>, <a href="/info/103926">ковалентно связанных</a> друг с другом двумя <a href="/info/143988">дисульфидными связями</a> и нековалентно-за <a href="/info/481177">счет водородных связей</a> и <a href="/info/8695">гидрофобных взаимодействий</a> (дополнение 9-4).
    С растворимыми белками ситуация более сложна, но и в этом случае цепь может складываться по-разно му здесь также происходит соответствующая перестройка системы водородных связей и гидрофобных взаимодействий между боковыми группами. Одни конформации, в принципе возможные для глобулярного белка, более устойчивы, чем другие, и обычно белок принимает одну из энергетически наиболее выгодных конформаций. Не исключено, одпако, и наличие других конформаций с почти той же энергией. Отсюда следует, что многие белки могут почти беспрепятственно переходить из одной конформации в другую — этот факт имеет очень большое биологическое значение. [c.105]

    Температура гелеобразования зависит от типа полимера, его концентрации, содержания и вида солей, добавок модификаторов, водородных связей и гидрофобных взаимодействий (типа карбамида). Варьирование этими параметрами дает возможность настройки нужной температуры гелеобразования. [c.102]

    ВЛИЯНИЕ ВНУТРИМОЛЕКУЛЯРНЫХ ВОДОРОДНЫХ СВЯЗЕЙ И ГИДРОФОБНЫХ ВЗАИМОДЕЙСТВИИ ПОЛЯРНЫХ ГРУПП НА ВНУТРИМОЛЕКУЛЯРНУЮ ПОДВИЖНОСТЬ [c.82]

    Молекулы белков строятся из соединяющихся друг с другом аминокислот. Соединение происходит в результате образования так называемой пептидной связи. Возникшая белковая молекула затем свертывается и принимает свойственную ей форму благодаря образованию четырех других видов связей — ионных, дисульфидных, водородных связей и гидрофобных взаимодействий. Знакомство с природой этих связей необходимо для понимания структуры и поведения белков. [c.127]


    По своему характеру процесс, протекающий в рибосомах при биосинтезе белка, относится к матричным синтезам. Такой принцип синтеза предполагает строгую фиксацию партнеров в пространстве в соответствии с определенной матрицей. До сих пор имеется мало сведений о природе, сил, которые определяют такую фиксацию. По-видимому, это могут быть силы типа водородных связей и гидрофобных взаимодействий. [c.485]

    Этот выбор диктуется в основном стремлением сохранить нативность очищаемого белка и максимально уменьшить неспецифическую сорбцию других компонентов исходной смеси. Само аффинное связывание вещества с лигандом, как правило, от состава буфера я ид-кой фазы зависит мало. Интересами сохранения нативности и растворимости белка диктуются выбор pH, наличие соли, а иногда (например, для белков мебран) введение в буфер добавок органических растворителей или детергентов. Все это определяется известными свойствами данного белка. Неспецифическая сорбция примесей, в частности балластных белков, на матрице и спейсерах происходит за счет тех же самых сил (притяжения разноименно заряженных групп, водородных связей и гидрофобных взаимодействий), которые обусловливают и биоспецифическое снизывание вещества с лигандом. Избирательность и прочность аффинной связи обусловлены кооперативным действием различных сил в области связывания, где они дополняют друг друга. Благодаря такой кооперации имеется возможность ввести в буфер факторы, ослабляющие действие сил какого-либо типа или даже всех их одновременно, но в такой степени, что биоспецифическое аффинное взаимодействие будет ослаблено лишь частично, в то время как неспецифическую сорбцию удастся подавить практически полностью. [c.404]

    K. отличаются от а-К. отсутствием поперечных дисульфидных связей между соседними полипептидными цепями. Последние обычно имеют антипараллельную ориентацию (см. Белки), к-рая стабилизируется водородными связями и гидрофобными взаимодействиями. Группы R аминокислотных остатков имеют сравнительно небольшие размеры. -K. не раств. в воде, устойчивы к действию орг. р-рителей, разб. к-т и щелочей их волокна более гибки, чем у а-К., но в отличие от последних не эластичны. [c.372]

    Биол. макромолекулы (белки, нуклеиновые к-ты) и их модели (полипептиды, полинуклеотиды) в р-рах могут иметь специфич. конформации, стабилизированные внутримол. взаимодействием. Так, нативные глобулярные конформации белков в водном р-ригеле стабилизированы водородными связями и гидрофобными взаимодействиями неполярных групп атомов. Полярные группы на пов-сти глобулы обеспечивают ее р-римость. При изменении состава и св-в р-рителя, pH и ионной силы р-ра или при изменении т-ры происходят виутримол. конформац. переходы типа спираль-клубок и глобула-клубок, что приводит к резкому изменению всех св-в Р. п. [c.190]

    Полная структура ДНК была установлена Д. Уотсоном и Ф. Криком в 1953 г. на основании определения химического состава и данных рентгеноструктурного анализа. Оказалось, что молекула ДНК состоит из двух спиралей, имеющих одну и ту же ось и противоположные направления. Сахарофосфатный остов располагается по периферии двойной спирали, а азотистые основания находятся внутри. Остов содержит ковалентные фосфодиэфир-ные связи, а обе спирали между основаниями соединены водородными связями и гидрофобными взаимодействиями. Водородные связи между основаниями строго специфичны, и этот факт имеет очень большое значение как для структуры ДНК, так и для ее биологической функции. Эти связи были открыты и изучены Э. Чарга( зфом в 1945 г. и получили название принципа комплементарности, а особенности образования водородных связей между основаниями называются правилами Чаргаффа. [c.45]

    НЫХ сетках, комплексообразованием между полимерами за счет вандерваальсовых сил, электростатических взаимодействий, водородных связей и гидрофобных взаимодействий, а также эвтектической кристаллизацией (разд. 26.8). [c.93]

    В то же время метод обратного осмоса может быть использован для разделения растворов органических веществ. Анализу процессов разделения этих раство-ров посвящена значительная часть обстоятельного обзора Мацууры [39]. В обзоре рассмотрены процессы разделения растворов органических веществ, в которых реализуется электростатическое взаимодействие, взаимодействие за счет водородных связей и гидрофобное взаимодействие. [c.29]

    В этой главе мы обсудим различные факторы, определяющие конформацию белка. Сначала мы рассмотрим особенности геометрии молекулы, например фиксированные длины связей и величины валентных углов полипептидной цепи. Затем проанализируем ограничения, налагаемые на возможные конформации стерическими факторами. Мы также рассмотрим усоверщенствованный вариант подобного анализа, основанный на использовании более реалистических потенциальных функций. В заключение мы познакомимся с другими факторами, играющими очень важную роль в формировании белковых структур. К ним относятся образование хорощо изученных водородных связей и гидрофобные взаимодействия, природа которых менее понятна. Если бы все эти факторы были достаточно хорошо изучены и существовал соответствующий математический аппарат, появилась бы возможность предсказывать, например, трёхмерную структуру белка по его аминокислотной последовательности. Эта цель еще не достигнута, но недавние успехи показывают, что ее нельзя считать нереальной. (Другие аспекты укладки белковых молекул обсуждаются в гл. 21.) [c.237]


    Конформации. Уникальные биологич. свойства Б. во многом определяются их существованием в р-рах в упорядоченной конформации. Это связано со слабыми внутримолекулярными взаимодействиями, среди к-рых первостепенную роль играют водородные связи и гидрофобные взаимодействия. Под действием агентов, нарушающих эти взаимодействия, происходит денатурация Б., т. с переход от нативной уникальной конформации к конформации беспорядочного клубка. В нек-рых случаях удается осуществить эффективную ренатура-цию Б. [c.129]

    Вторичная структура молекул НК представляет собой двуцепную спираль, в которой две комплементарные друг к другу цепи или участки полинуклеотидной цепи тесно сближены и удерживаются за счет водородных связей и гидрофобного взаимодействия специфических пар азотистых оснований. [c.116]

    Удерживание адсорбированной молекулы фермента на поверхности носителя может обеспечиваться за счет неспецифических вЗн-дер-ваальсовых взаимодействий, электростатических взаимодействий, водородных связей и гидрофобных взаимодействий между носителем и поверхностными группами белка. Относительный вклад каждого из типов связывания зависит от химической природы носителя и функциональных групп на поверхности молекулы фермента. В большинстве случаев основную роль в связывании фермента играют электростатические взаимодействия и водородные связи. Взаимодействия с носителем могут оказаться настолько сильными, что сорбция биокатализатора будет сопровождаться разрушением его структуры. Например, при адсорбции некоторых растительных клеток на гранулах цитодекса клеточная стенка деформируется, повторяя рельеф поверхности частиц носителя. [c.49]

    Теоретически пептид может находиться в самых разнообразных конформационных состояниях (т.е. иметь множество вариантов пространственного расположения атомов). Однако, судя по имеющимся данным, в растворе диапазон возможных конформаций невелик. Наличие преимущественных конформаций обусловлено такими факторами, как стерические ограничения, кулоновские взаимодействия, водородные связи и гидрофобные взаимодействия (гл. 5). Как и в случае белков, физиологическая активность полипептидов (например, ангиотензина и вазопрес-сина) тоже зависит от их конформации (гл. 45, 48). [c.35]


Смотреть страницы где упоминается термин Водородные связи и гидрофобные взаимодействия: [c.93]    [c.518]    [c.154]    [c.64]    [c.158]    [c.445]    [c.258]    [c.99]   
Смотреть главы в:

Биохимия ТОМ 1 -> Водородные связи и гидрофобные взаимодействия




ПОИСК





Смотрите так же термины и статьи:

Водородные связи

Гидрофобные взаимодействия

Гидрофобные связи

Связь водородная, Водородная связь



© 2024 chem21.info Реклама на сайте