Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Перегруппировка кислородсодержащих соединений

    ПЕРЕГРУППИРОВКИ КИСЛОРОДСОДЕРЖАЩИХ СОЕДИНЕНИИ [c.537]

    В процессе окислительной каталитической конверсии происходит существенное увеличение содержания кислорода, особенно в смолистой части остатка 350°С — КК. Суммарный выход кислородсодержащих соединений с ростом температуры процесса уменьшается, что связано с их невысокой термической стабильностью и увеличением ДОЛИ реакций полного окисления. За счет существенной перегруппировки соединений, содержащих кислород, происходит образование преимущественно ангидридов дикарбоновых кислот, сульфоксидов, фенолов и кетонов, причем максимум содержания кетонов совпадает [c.204]


    Эти металлоорганические перекисные соединения могут претерпевать перегруппировку по реакции 2. Гидролиз образовавшегося при этом продукта перегруппировки должен сопровождаться выделением соответствующих окисных металлоорганических, а также других кислородсодержащих соединений, что мы действительно наблюдали. [c.295]

    Вполне возможно, что в зависимости от конкретных условий проведения реакции металлоорганических соединений с кислородом процесс может протекать как с участием свободных радикалов, так и путем молекулярной перегруппировки кислородсодержащего комилекса. Соотношение скоростей этих двух процессов может изменяться в очень широких пределах. [c.254]

    Направления протекания реакций пиролитического разложения органических полимеров настолько разнообразны и сложны, что делать какие-либо обобщения на этот счет практически не имеет смысла. Обычно рассматривают два механизма деструкции распад макромолекул по закону случая и их деполимеризацию. При этом предполагается, что если существует возможность для резонансной стабилизации промежуточных продуктов распада, то деполимеризация цепей более вероятна. Обширные исследования Мадорского, Уолла и их сотрудников также привели к интересным выводам относительно реакций разложения каучуков, галогенсодержащих полимеров, структурированных полимеров и полиами-дов. Изолированные аллильные группы, разветвления и галогенсодержащие или кислородсодержащие соединения распадаются легче, чем углеводороды с ароматическими группами. Нестойкость таких соединений объясняется образованием в процессе распада продуктов, содержащих пятичленные или шестичленные циклы, отщеплением атома водорода, обусловленным электроотрицательностью соседних с ним атомов или групп, или резонансной стабилизацией за счет расположенных по соседству групп. Замещение подвижных атомов водорода на более устойчивые атомы и группы (например, фтор, метильная, фенильная группа) открывает весьма эффективные пути повышения пиролитической стабильности. Реакции, которые приводят к образованию сопряженных двойных связей в цепи (например, конденсация нитрильных групп в полиакри-лонитриле или отщепление галоидоводородов от галогенированных полимеров), также повышают устойчивость полимеров. Кроме того, полимерные вещества могут разлагаться, отщепляя боковые группы, структурироваться, особенно под влиянием кислорода, или претерпевать перегруппировки с образованием более или менее стабильных структур по сравнению с исходным веществом. [c.23]


    Показано, что накопление каких-либо отрицательных атомов и групп в молекуле кислородсодержащего органического соединения приводит к упрочению связей этих атомов и групп с соответствующими атомами углерода. Это упрочение связей определяет относительную легкость пинаколиновой перегруппировки а-гликолей, относительную легкость образования сложных эфиров спиртов и дегидратации спиртов и р-оксикислот, возможность существования и устойчивость [c.1662]

    Часто при интрамолекулярных перегруппировках кислородсодержащих соединений получаются самые различные гилроксилсодержащие соединения. Наиболее известными реакциями такого рода являются  [c.141]

    Научная новизна. В результате проведеных исследований установлено влияние технологических параметров на химический состав остаточной фракции, а также превращения основных химических групп и гетеросоединений. Показано, что в процессе ТКП происходит значительная перегруппировка кислородсодержащих соединений, в частности, установлено высокое (до 9 %) содержание кетонов и сульфок-сидов. [c.4]

    Еще более наглядная иллюстрация превращений кислородсодержащих соединений получена Бейноном и сотр. [10] на примере дифенилового эфира и Уилсоном [104] для целого ряда подобных соединений. Во всех этих случаях основной осколочный ион (помимо исходного молекулярного иона) образуется в результате отщепления нейтральной молекулы окиси углерода и перегруппировки углеводородного остатка с образованием одной частицы. Бейнон и сотр. [10] установили также, что характер распада этого Иона очень напоминает характер распада иона бензотропилия. Из результатов, полученных Уилсоном, можно сделать общий вывод, что интенсивность иона, образующегося путем отщепления окиси углерода, уменьшается по сравнению с интенсивностью исходного молекулярного иона с увеличением размера заместителей в ряду диари-довых эфиров. [c.23]

    Предположение об образовании комплекса борорганических соединенш с кислородом и быстрой его перегруппировки в перекисное соединение дает возможность объяснить ингибирующее влияние аммиака, азотсодержащих органических оснований, а также воды и алкильных перекисей на скорость окисления этих металлоорганичесгшх соединений. Суть такого объяснения сводится к допущению конкуренщ1П процесса образования комплексов борорганических соединений с кислородом или с иигпбн-торами. Чем легче образуется комплекс борорганических соединений с ингибиторами, тем меньше скорость образования кислородсодержащего комилекса и тем медленнее протекает реакция между исходными борорганическими соединениями и кислородом. [c.112]

    Рассматривая химию органических соединений фосфора как составную часть химии элементоорганических соединений, необходимо привести некоторые соображения общего порядка. С точки зрения химика-оргаиика необходимо четко разграничивать собственно органические производные какого-либо элемента, т. е. соединения, содержащие непосредственные связи элемента с углеродом, и органические производные неорганических соединений соотЕетст-вующего элемента. В последнюю группу включают, например, сложные эфиры неорганических кислородсодержащих кислот, которые характеризуются наличием элемент-кислород-углеродных связей. Если с такой точки зрения обе группы производных принято разграничивать, то при рассмотрении их с позиции химии элементоорганических соединений положение меняется. В этом случае внутренняя взаимосвязь указанных соединений, а она выявляется с помощью реакций типа перегруппировки Арбузова, предполагает единый глубокий подход к обеим группам производных, что подразумевается и тогда, когда это не находит строгого выражения в обычно употребляющихся названиях. [c.28]

    При вычислении содержания кислорода, исходя из кислородсодержащих групп, оказывается, что суммарное содержание кислорода, рассчитанное по функциональным группам, больше, чем по элементарному составу. Это можно объяснить тем, что мы имеем дело с соединениями, которым свонственны кето-энольные перегруппировки, что при определении карбонила и гидроксила могут, таким образом, получаться завышенные суммарные значения. [c.378]

    В ином отношении интересны интенсивные пики ионов (СН ) в спектрах 1,3-диоксолана и его 2-метилпроизводного. Единственным другим соединением, в спектре которого имеется большой пик ионов с массой 15, является 1,4-диоксан. Механизм образования этих пиков неясен. Можно видеть, что многие ионы в рассматриваемых масс-спектрах образуются с миграцией атомов водорода, и это усложняет структурное определение по масс-спектру, полученному на приборе с низкой разрешающей силой. В таких спектрах до некоторой степени приходится использовать некоторый избыток в значении масс кислородсодержащих ионов по сравнению с соответствующими углеводородными ионами в качестве способа определения положения кислородных атомов в молекуле. Ни в одном из спектров не наблюдается перегруппировок атомов углерода или кислорода, и поэтому точное измерение масс всех пиков в спектре позволяет часто очень просто установить положение кислородных атомов. Например, в спектре симметричного триоксана ионы с массой 16 характеризуются дублетом (СН+ и О ), который указывает на наличие кислорода группа ионов с низкими значениями масс, лежащими в диапазоне 29—35, обладает составами (СНО), (СНгО), (СН3О), (СН4О) и (СНбО). Они включают ряд ионов, образованных с перегруппировкой водорода. Наличие во всех ионах одного углеродного и одного кислородного атома и отсутствие ионов, содержащих Сг и Ог, свидетельствует о чередовании атомов углерода и кислорода в цепи и указывает на присутствие более чем одного атома кислорода. Это подтверждается отсутствием тяжелых ионов типа С3О или СО3, а также отсутствием молекулярных ионов. Аналогично сказанному большой пик ионов (С4Н7) в спектре 4-метил-1,3-диоксана играет важную роль при расшифровке структуры этого соединения. [c.379]



Смотреть страницы где упоминается термин Перегруппировка кислородсодержащих соединений: [c.555]    [c.116]    [c.561]    [c.6]    [c.628]    [c.3]    [c.376]    [c.577]    [c.213]    [c.628]    [c.485]    [c.379]    [c.159]   
Смотреть главы в:

Методы эксперимента в органической химии Ч.2 -> Перегруппировка кислородсодержащих соединений

Методы эксперимента в органической химии Часть 2 -> Перегруппировка кислородсодержащих соединений




ПОИСК







© 2025 chem21.info Реклама на сайте