Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Факторы, влияющие на процесс образования комплексов

    Синтез метанола под давлением сопровождается образованием побочных продуктов, влияние которых на скорость образования метанола учесть весьма трудно. В то же время побочные продукты — вода, сложные эфиры, высшие спирты, альдегиды, кетоны, кислоты, углеводороды и др. — влияют на хемосорбцию исходных и промежуточных продуктов, образование активированных комплексов и в итоге — на кинетику образования метанола. Эти факторы являются одними из основных причин разнообразия применяемых лимитирующих стадий и получаемых кинетических закономерностей, поскольку условия исследований процесса практически всегда в чем-то отличались друг от друга. В исследованиях по кинетике синтеза метанола взаимодействие катализатора с компонентами реакции учитывалось также недостаточно. [c.64]


    На устойчивость двойной спирали в растворе влияют многочисленные факторы. Образование упорядоченных структур является экзотермическим процессом, и поэтому спирали стремятся расплавиться при повышении температуры растворов ДНК. Из числа сил, стабилизующих нативную форму, водородные связи и диполь-дипольные взаимодействия между пуриновыми и пиримидиновыми остатками, упакованными в двойную спираль [344], должны приводить к выделению тепла. В то же время следует ожидать, что гидрофобное взаимодействие будет эндотермическим. Значение гидрофобного взаимодействия иллюстрируется тенденцией водных растворов ДНК к денатурации при добавлении органических растворителей с большими неполярными остатками [345]. Как и следовало ожидать, высокая плотность заряда, обусловленная ионизованными фосфатными остатками, расположенными вдоль цепи ДНК, обусловливает неустойчивость спиральной конформации. В результате этого добавление умеренных количеств электролитов должно стабилизовать нативную форму ДНК, что и было обнаружено при добавлении таких солей, как галогениды щелочных или щелочноземельных металлов [346, 347]. Если определить температуру плавления (Г ) как температуру, при которой изменения в спектре, характеризующие денатурацию, происходят на 50%, то Т- , по-видимому, будет иметь примерно линейную зависимость от логарифма концентрации катионов щелочных металлов. В типичном случае повышается от 36 до 82° при увеличении концентрации ионов натрия с 0,0003 до 0,1 н. Увеличение концентрации соли приводит также к сужению интервала температур, в котором происходит переход спираль — клубок. В отношении стабилизации спиральной конформации особенно эффективны некоторые двухвалентные иопы, образующие специфические комплексы с фосфатными группами основной цепи ДНК (например, Mg +). Нуклеиновая кислота как бы образует стехиометрические комплексы с этими катионами, причем Тт таких комплексов высока даже при очень слабой ионной силе. При всех условиях переход спираль — клубок происходит в удивительно узком температурном интервале, причем 90% изменений, как правило, происходит в интервале менее 10°. [c.127]

    Интерпретация полученных результатов при изучении пространственных эффектов заместителей посредством определения констант образования связана с определенными трудностями вследствие того, что анализ констант образования не может ответить на вопрос о том, в какой мере влияют пространственные эффекты заместителей на прочность связи металл — лиганд и в какой мере они сказываются на энтропийных факторах в процессе образования комплексов. Трудности такого рода могут быть устранены при изу- [c.232]


    О-пеницилламин, образуя комплексное соединение с ионами меди, способен подавлять активность Т-хелперов, угнетать продукцию В-лимфоцитами 1д, включая ревматоидный фактор, и снижать образование иммунных комплексов. Препарат влияет на синтез и состав колла гена, увеличивая содержание в нём альдегидных групп, связывающих компонент комплемента С1, снижает вовлечение всей системы комплемента в патологический процесс, увеличивает содержание водорастворимой фракции и тормозит синтез фибриллярного коллагена, богатого гидроксипролином и дисульфидными связями. [c.316]

    Теория столкновений рассматривает скорость как число эффективных столкновений между молекулами реагентов. Для данной теории не важно, что происходит с неустойчивыми промежуточными соединениями. Она просто предполагает, что указанные соединения настолько быстро превращаются в продукты, что это не влияет на скорость всего процесса. Теория переходного состояния рассматривает скорость реакции как скорость распада активированных комплексов. Скорость образования этих комплексов принимается такой быстрой, что их концентрация все время является равновесной. Данную теорию не интересует, как они образуются. Таким образом, теория столкновений считает, что первая стадия процесса, описываемого схемой (И,50), протекает медленно и, следоват,ельно, контролирует скорость реакции в то же время теория переходного состояния рассматривает вторую стадию схемы (И,50) как основной фактор, лимитирующий скорость, сочетая это с определением концентрации комплексов. В известном смысле обе описанные теории дополняют одна другую, [c.45]

    Квадратичный О. ц.— диффузионно контролируемая реакция, состоящая, согласно теоретич. представлениям, из трех стадий поступательной диффузии двух макрорадикалов с образованием объединенного клубка, взаимного сближения активных концов за счет диффузии отдельных сегментов и звеньев и непосредственно химич. взаимодействия реакционных центров с образованием продуктов реакции. Для большинства исследованных виниловых мономеров константа скорости квадратичного О. ц. обратно пропорциональна вязкости исходной системы, а стадией, определяющей скорость процесса, является сегментальная диффузия концов макрорадикалов. Факторы, снижающие сегментальную подвижность цепи (напр., введение в полимеризационную систему модификаторов — веществ, способных образовывать комплексы со звеньями полимерной цепи, или использование второго сомономера, увеличивающего жесткость цепи), значительно влияют на скорость квадратичного О. ц. [c.201]

    Такого рода взаимодействия, с одной стороны, вызывают чисто химические эффекты, изменяя реакционную способность, мономеров и радикалов в результате их связывания с молекулами среды. Специально введенные вещества (модификаторы) могут вызывать изменения энергии сопряжения и распределения электронной плотности в мономере и в радикале. Если они принимают участие в образовании переходного комплекса, они, естественно, влияют на его энергию, конфигурацию и на саму химическую природу. По существу, это означает переход от-свободно радикального к комплексно-радикальному механизму роста цепи. Учет этих факторов в ряде случаев оказывается достаточен и позволяет описывать полимеризационный процесс,, по крайней мере на малых степенях превращения. [c.57]

    Биосинтез. липидов обсуждается в гл. XVI. Здесь нам хотелось бы остановиться только на следующих моментах. Ключевой промежуточный продукт всех этих реакций — ацетил-КоА (см. фиг. 102) — может синтезироваться, в сущности, лигпь двумя путями (см. фиг. 101) в реакции тиолитиче-ского расщепления ацетоацетил-КоА (образованного при окислении жирных кислот или определенных аминокислот) и в реакции окислительного декарбоксилирования пирувата. Оба процесса локализованы в митохондриях или их аналогах. В то же время биосинтез жирных кислот начинается с обязательной стадии карбоксилирования ацетил-КоА с образованием мало-пил-КоА, а эта реакция, так же как и все последующие стадии, катализируется, по-видимому, впемитохондриальным комплексом ферментов. Как это согласовать Диффундирует ли ацетил-КоА из митохондрий сам ио себе или же для его переноса необходим более сложный процесс, требующий энергии извне Недавние исследования показали, что, вероятно, справедливо второе предположение ацетил-КоА внутри частицы сначала превращается в цитрат путем конденсации с оксалоацетатом затем образованный таким путем цитрат выходит в цитоплазму, где снова расщепляется на ОА и ацетил-КоА под действием цитрат-лиазы, использующей АТФ (уравнение XIV. 1а). Количество этого фермента в сильной степени зависит от генетических факторов и от условий окрул ающей среды, например от питания кроме того, на него могут сильно влиять такие патологические состояния, как диабет или ожирение. Процесс синтеза жирных кислот в отличие от синтеза углеводов нуждается лишь в каталитических количествах ОА (или пирувата - - СО2) таким образом, четырехуглеродные дикарбоновые кислоты для него не нужны. [c.363]


    Ha экстракцию металлов из сульфатных растворов главным образом влияют следующие факторы концентрация иона SO4 в водной фазе концентрация других комплексообразующих веществ, конкурирующих с аминами концентрация других анионов, снижающих концентрацию свободного амина pH темпера тура эффективная концентрация свободного сульфата амина концентрация самого иона металла — в тех случаях, когда он образует полимерные соединения или полиядерные комплексы. На экстракцию урана из сульфатных растворов с pH —3 концентрация самого урана не влияет. Коэффициент распределения (U) = [Uy[U] остается постоянным при изменении концентрации урана, если исключить косвенное влияние, обусловленное изменением свободной концентрации экстрагента. Это подтверждается обычной кривой изотермы экстракции урана, приведенной на рис 1. Напротив, коэффициент распределения некоторых металлов, подобных ванадию (V) и молибдену (VI), повышается с ростом их концентрации, так как при экстракции важную роль играет образование в растворе полимерных форм. Это приводит к S-образной изотерме экстракции (рис. 1) На наличие процесса [c.192]

    Магний—довольно электроотрицательный металл (5 g2+/Mg= = —2,1 В) —корродирует в свободном от кислорода нейтральном растворе хлористого натрия с выделением водорода. Железо в таких же условиях остается нетронутым. В то же время при многих коррозионных процессах в растворах, содержащих кислород, реакции с выделением водорода и восстановлением кислорода протекают одновременно. Относительную роль кислорода, гидратированного протона и молекулы воды в процессе коррозии установить сложно, поскольку она зависит от таких факторов, как природа металла, раствора, значения pH, концентрации растворенного кислорода, температуры, возможности образования комплексов и др. Скорость реакции с восстановлением водорода обычно контролируется активацией и в существенной степени зависит от природы электрода, хотя pH раствора, температура и пр. также оказывают определенное влияние. Поэтому в данном случае зависимость между перенапряжением и плотностью тока отвечает уравнению Тафеля (1.19), причем на значениях а и Ь сказываются природа металла и состав раствора. При высоких плотностях тока перенос зарядов становится существенным и линейное соотнощение между Т1 и logi нарушается. При восстановлении кислорода контроль активацией существен при низких плотностях тока, но при повышении плотности тока большее значение приобретает диффузия, и скорость коррозии тогда соответствует предельной плотности тока. Отметим, что в отличие от перенапряжения активации перенапряжение концентрации не зависит от природы электрода, хотя пленки и продукты коррозии, которые задерживают передачу электронов на катодных участках, будут заметно влиять на ее скорость. [c.29]

    Гомогенные реакции в твердых веществах редко встречаются, химические изменения, в которых участвуют твердые вещества, происходят обычно на их поверхности, а также у центра зарождения новой фазы, где комбинируются химическое превращение и рост кристалла [247]. Единственная, еще нерассмотренная разновидность гомогенных систем в катализе, —это системы, компоненты которых находятся в жидком состоянии или в растворе (табл. 58 — 64). Предложено [421] классифицировать гомогенный катализ на непосредственный или химический и косвенный или катализ с участием среды. Участие катализатора в процессе не отображается стехиометрическим уравнением, и его влияние зависит от образования промежзт очных молекулярных комплексов, между тем как каталитически действующая среда влияет на скорость реакции, нарушая условия, от которых зависит данная реакция, такие, например, как образование комплексов или их диссоциация. Характер среды или растворителя, — это фактор, влияющий на условия каталитической реакции. Предполагают, что действие прямого катализатора подчиняется закону химического действия масс, так как он реагирует химически, влияние среды — непрямых катализаторов, которые практически могут принимать участие всей массой, интерпретируется иначе. По предположению Розанова, относительное изменение константы скорости реакции пропорционально изменению концентрации каталитически действующей среды. Розанов, обобгцая понятие влияния растворителя, выразил его математически уравнением  [c.194]

    Установлено, что следующие экспериментальные факторы влияют на процесс образования стереоблок-сополимеров природа соединения, содержащего переходный металл, его кристалличность, способность этого соединения образовывать комплексы с металлоорганическими соединениями и стабильность таких комплексов [4]. Условия, способствующие более легкой диссоциации комплекса (повышение температуры или наличие громоздких бо ковых цепей), понижают степень стереорегулярности полимера, т. е. инверсия конфигурации мономерных звеньев в макромолекулах, получаемых в этих условиях, происходит более часто. Так, повышение температуры при полимеризации пропилена (см. ниже) или использование менее стереоспецифического катализатора (такого, как соединения пятивалентного ванадия) уменьшает изо-тактическую фракцию в полимере, но увеличивает коли чество образующегося стереоблок-сополимера. Для регулирования молекулярного веса образующегося продукта без изменения его стереорегулярности можно изменять некоторые экспериментальные условия реакции так добавление других алкилов металла (например, цинка) к комплексу А1(С2Н5)з—Т1С1з регулирует рост цепи [4]. [c.215]

    Присутствие стехиометрических по отношению к инициатору количеств комплексообразующих агентов часто вызывает заметное увеличение скорости полимеризации, обусловленное прежде всего образованием комплексов RMt-D и M Mt-D. Это явление, рассмотренное уже на примерах полимеризации неполярных мономеров, имеет в данном случае ту особенность, что полярные мономеры способны успешно конкурировать с независимыми электронодоно-рами, если основность последних недостаточно велика. Роль относительной основности мономера и агента D как фактора, определяющего конечный результат, усугубляется частым для таких систем условием [М] > [D]. Поэтому неудивительно, что ТГФ, который уже при отношении к бутиллитию 1 1 заметно влияет на полимеризацию бутадиена (см. стр. 58), не оказывает подобного действия на полимеризацию акрилонитрила при том же отношении реагентов. Для этого мономера существенное активирование процесса достигается при использовании в качестве агентов D таких сильных оснований Льюиса, как диметилформамид и диметилсульфоксид, что установлено на примере магнийорганических инициаторов [48]. [c.82]

    Интересной особенностью вариаций трансферрина является преобладание одного трансферрина в определенных популяциях. Генетический локус трансферрина может претерпевать многочисленные мутации, в результате которых отдельные популяции образуют собственные, характерные для них мутанты. Популяции индейцев племени Навахо, китайцев и негров представляют собой пример сбалансированного полиморфизма. В каждой из этих популяций в процессе эволюции, по-видимому, появился свой, отвечающий местным условиям вариант трансферрина. Поскольку основной функцией трансферрина является перенос железа и так как генетическая изменчивость трансферрина состоит в основном в изменении заряда, возможно, что отношение равновесия, определяющее перенос железа, может быть изменено у различных вариантов трансферрина путем изменения их заряда. Согласно предположению Лаурелла о равновесии [102], более медленно движущийся трансферрин, обладающий большим положительным зарядом, должен быть лучше приспособлен для образования комплекса трансферрин — железо и, следовательно, для удаления железа из тканей, в то время как более быстро движущийся трансферрин, имеющий больший отрицательный заряд, более склонен к диссоциации комплекса с железом, что способствует накоплению железа в тканях. Недавно проведенные исследования Тернбулла и Джиблетта [103] показали, что трансферрины Во, Bi, С и Вз незначительно отличаются по скорости удаления железа из сыворотки и по скорости использования железа для синтеза гемоглобина. Однако на эти процессы могут влиять, помимо трансферрина, и другие факторы. [c.132]

    Однако это не так фактически фосфат активирует АТФазную реакцию [75—77], а его влияние на АТФ-зависимые эндергониче-ские реакции субмитохондриальных частиц сложное и зависит от присутствия АДФ [78]. Такое парадоксальное влияние фосфата на АТФазную активность послужило предпосылкой для наших исследований, в которых было обнаружено сильное воздействие Фн на образование медленного комплекса Е-АДФ. Мы показали, что неорганический фосфат практически не влияет ни на Кт для АТФ, ни на /Сг для АДФ (простой конкурентный тип торможения) в АТФазной реакции, катализируемой субмитохондриальными частицами. В то же время величина константы диссоциации медленного комплекса Е-АДФ в присутствии 10 мМ Фн увеличивается на два порядка. Следует отметить, что предложенная нами ранее гипотеза, согласно которой высокоспецифичное к АДФ место связывания нуклеотида служит активным центром АТФазной реакции [50, 53], количественно плохо согласовывалось с величинами Кт для АДФ в процессе окислительного фосфорилирования. Сильное уменьшение сродства фермента к АДФ в присутствии фосфата, во-первых, сняло это противоречие, а во-вторых позволило дать простую интерпретацию ряду ранее известных, но не объясненных фактов. Давно известно, что азид, будучи ингибитором АТФазы, ингибирует связывание фосфата фактором Рь а сульфит увеличивает это связывание 7]. Образование комплекса р1 с фосфатом — медленный процесс [6, 7], что плохо соответствует представлению о его вовлечении в каталитический цикл окислительного фосфорилирования. Оба этих явления логически вытекают из схемы (12), так же как и не объясненная ранее стимуляция АТФазной. реакции после преинкубации с неорганическим фосфатом [75—77]. Нам удалось показать, что неорганический фосфат, уменьшая сродство АТФазы к АДФ, медленно (с такой же скоростью, как и АТФ-регенерирующая система) активирует АДФ-блокированную АТФазу, и эта активация чувствительна к азиду. [c.38]

    ЛС второй подгруппы — циклофосфан, азатиоприн и метотрексат — как антиметаболиты нарушают синтез нуклеиновых кислот и белка во всех тканях, однако их действие наиболее выражено в тканях с быстрым обновлением клеток, например в ткани злокачественной опухоли, кроветворной ткани, слизистой оболочке ЖКТ, половых железах. Они угнетают деление Т-лим-фоцитов, их трансформацию в хелперы, супрессоры и цитостатические клетки, что приводит к блокированию кооперации Т- и В-лимфоцитов, торможению синтеза иммуноглобулинов (в том числе ревматоидного фактора), цитотоксинов и образования иммунных комплексов. Циклофосфан и азатиоприн интенсивнее, чем метотрексат, подавляют бласттрансформацию лимфоцитов, синтез АТ, а также тормозят реакции замедленной гиперчувствительности, снижают содержание у-глобулинов. Метотрексат в малых дозах активно влияет на показатели гуморального иммунитета, некоторые ферменты, имеющие большое значение в развитии воспаления, подавляет освобождение интерлейкина 1 мононуклеарными клетками. Необходимо отметить, что лечебный эффект иммунодепрессантов в применяемых дозах при ревматоидном артрите и других иммуно-воспалительных заболеваниях не соответствует степени вызываемой ими иммунодепрессий. Вероятно, это зависит от ингибирующего влияния на клеточную фазу местного воспалительного процесса. Циклофосфану приписывают и собственно противовоспалительный эффект. [c.316]

    Требования к внешней среде - это потребность в условиях, благоприятствующих образованию достаточного количества питательных веш.еств для роста, и сохранение необходимого внутреннего баланса воды. Этрт довольно щзостыс потребности на самом деле включают множество различных факторов внешней среды и тесно связаны с физиологическими процессами. Мнсз-жество компонентов внешней среды различной степени важно-СТ1Т тесно взаимосвязаны между собой и также с растением. Ео лее того, рост может быть одинаковым при раз. шчных комбинациях нескольких факторов. Считается, что хотя на рост могу т влиять несколько факторов, один из них может быть в данный момент более важным, чем остальные, хотя его действие проявляется в тесном содружестве с комплексом внешних условий. [c.56]

    Известно, что НО (рис. 4.19) в водных растворах находятся в гидратированном состоянии и ассоциируют друг с другом. Так как расположение полярных групп в НО различно, то можно предполагать различия в их гидратации, которые влияют на взаимодействия между основаниями в воде. Это подтверждается исследованиями рисунка воды вокруг четырех оснований гуанина, аденина, цитозина и тимина по данным кристаллографического анализа [80]. Обнаружены конфор-мационно-зависимые различия как в геометрии, так и в степени гидратации оснований. Ассоциация НО в воде достаточно полно изучена и не вызывает сомнений. Например, самоассоциация Ade исследована в работе [81]. Гидратация и самоассоциация Ura изучена спектроскопическими методами в работах [82, 83] и установлено, что гидратация карбонильной группы С(4)-0(4) значительно выше, чем гидратация группы С(2)-0(2). Кроме того, сделан вывод, что Ura образует в воде циклические димеры при участии групп С(4)-0(4). Т. Лилли с сотрудниками [84] показано, что кофеин ассоциирует в воде с образованием димеров, тримеров и т.д. с одинаковой константой равновесия для каждой стадии. Наконец, спектроскопическими методами установлено [85], что величины констант ассоциации для комплексов убывают в следующем порядке yt + yt > yt + Ura > Ura + Ura, что характеризует склонность HO к самоассоциации в воде. Ассоциация НО в водных растворах является выгодным процессом с энергетической точки зрения [86]. Основным фактором, стабилизирующим образование димеров, является изменение энергии взаимодействия молекул воды друг с другом, которое связано со значительным изменением ее структуры молекулами НО. Моделирование ассоциации af в водном растворе с помощью метода Монте-Карло свидетельствует [87], что метильные группы мономеров при димеризации располага- [c.234]

    Матиевич [51] обсудил возможность применения теории ДЛФО к различным неорганическим золям. Для кремнеземных золей наиболее важным фактором является природа электролита. Процесс адсорбции и образования стабильных комплексов, на поверхности кремнезема настолько сильно влияет на катионы, что упомянутая теория в данном случае имеет небольшое практическое значение. К тем же самым выводам пришли авторы работы [52] в отношении коллоидной системы, содержащей частицы ТЮг. [c.438]

    Чрезвычайно важным фактором для катионной полимеризации является природа реакщ10нной среды. Наблюдаемые при этом закономерности весьма просты повышение полярности среды, благоприятствуя реакциям инициирования и роста, приводит к ускорению полимеризации. Насколько существенно это влияние, показывают данные Кокли и Дейнтона по полимеризации стирола под влиянием комплексов RSn ls в различных средах в четыреххлористом углероде полимеризация вообще отсутствует, а в нитробензоле протекает с большой скоростью [16]. Весьма важно, что изменение полярности среды влияет не только на скорость процесса, но и на кинетические зависимости, например на порядок реакции. Это является результатом различий в механизме инициирования. Приведенное выше уравнение (V-11), которое, как уже отмечалось, не является общим для всех катионных систем, справедливо для сред, отличающихся высокой полярностью. В подобных случаях образование активных центров протекает без участия мономера и общая скорость реакции имеет 1-й порядок по мономеру (V-15). Напротив, в средах с низкой диэлектрической проницаемостью возникновение активных центров, особенно для комплексов, образованных слабыми основаниями Льюиса, происходит только при участии мономера. Степень этого участия на- [c.303]

    Обратим внимание и на другое важное обстоятельство. При анионной полимеризации, так же как и в катионных процессах, константы сополимеризации зависят от природы среды и противоиона. Причины этого, общие для обоих ионных процессов, нами уже рассматривались (стр. 313). Для анионных систем известны примеры, где влияние указанных факторов чрезвычайно велико. Так, при сополимеризации бутадиена (М ) со стиролом (Ма) под влиянием бутиллития константы сополимеризации при комнатной температуре равны — 10.0 и Га — 0.035. В присутствии комплексообразующих агентов (эфира, ТГФ и др.) картина резко меняется происходит нивелирование реакционноспособности растущих цепей по отношению к обоим мономерам и константы сополимеризации приближаются к единице [101, 109]. При катионной сополимеризации столь значительного влияния среды никогда не наблюдалось. Более высокая чувствительность констант сополимеризации к природе среды в анионных системах обусловлена тем, что люталлорганические соединения дают с основаниями Льюиса прочные комплексы, а это меняет природу активных центров. В то же время противоион при катионной полимеризации, как правило, не претерпевает серьезных изменений и влияние растворителя ограничивается чисто сольвата-ционными эффекталш. Поэтому оно существенно только для сополимеризации мономеров, сильно различающихся по своей полярности (табл. 31). В анионных системах, напротив, растворитель перестает влиять па константы сополимеризации при значительном различии в природе мономеров. Такая мономерная пара, как стирол—метилметакрилат, пе обнаруживает чувствительности к природе среды. Для нее анионная полимеризация в любых условиях приводит к образованию полимеров, которые пр11 малой коп-версии практически не содержат стирола. Только после исчерпания более активного мономера стирол начинает входить в полимерную цепь. В результате этого в подобных системах образуются макромолекулы, состоящие из двух блоков —(М ), —(Мз) —. [c.362]

    При исследовании термического разложения алифатических нитросоедипений и нитроаминов получены характеристики трех мономолекулярных процессов диссоциации связи С—КОг, элиминирования ННО из нитросоединений и разрыва связи N—N02 в нитроаминах. Изучение реакции разрыва связи С—N02 позволяет кинетическим методом определить энергию диссоциации X) (С—Л), которая лежит в пределах 35—55 ккал моль, и термохимически оценить теплоты образования нитроалкильных радикалов. Величина предэкспоненциального множителя ко меняется от 10 > до 10 сек- . Здесь проявляются все факторы, которые, согласно теории, могут влиять на величину к понижение частот маятниковых колебаний, освобождение заторможенного внутреннего вращения вокруг связи С—НОг, понижение частот крутильных колебаний соседних с реакционным центром алкильных групп в активированном комплексе. [c.215]

    Антрахинон и его простейшие производные оказывают незначительное, но определенное влияние на фотохимическое окисление целлюлозы метильные и галоидозамещенные, особенно в положении 2, обладают повышенной активностью. Действие антрахиноновых кубовых красителей углубляется сродством лейкосоединений к целлюлозе и усилением связи целлюлозы и красителя в комплексе, что дает возможность более эффективно проявиться влиянию красителя. Каков бы ни был механизм действия света на систему целлюлоза — краситель, но ориентация и плотное внедрение молекул красителя в волокно должны влиять на процесс. Отсюда следует, что факторы, влияющие на сродство красителя к волокну, как-то конфигурация, размер молекул красителя, природа, количество и распределение групп, способных к образованию водородных связей с гидроксильными группами целлюлозы, должны оказывать влияние и на фотохимические процессы. Влияние этих факторов частично объясняет различия, наблюдавшиеся Ландольтом (табл. III) в фотохимической активности 1,5-диароиламиноантрахинонов (например, о- и и-хлорбензоильных производных. [c.1419]

    В работе [13] вьщвинута и обоснована экспериментами гипотеза о механизме подъема частиц в потоке за скользящей ударной волной за счет силы Магнуса. В качестве метода исследования применялся быстродействующий диагностический комплекс, основанный на использовании шлирен-метода с лазерным стробоскопическим источником света в ударной трубе сечением 50 х 50 мм. Авторами приведены результаты экспериментов по динамике поведения различных порош-, ковых материалов (размером до 50 мкм, плотность 1.2...8.6 г/см , толщина слоя 2 мм) за фронтом проходящей УВ (М = 2...3, начальное давление 1 атм), полученные с помощью метода многокадровой теневой лазерной визуализации. Слой порошка насыпали в кювету, чтобы внешняя поверхность не выступала над стенкой канала (в работах [1,2, 9] показано, что выступание переднего края засыпки влияет на процесс подъема пыли), прикатывали и разравнивали так, чтобы шероховатости на поверхности практически не превышали размера частиц. Наблюдалось увеличение шероховатости поверхности засыпки и рост ее толщины, при этом отдельные частицы срывались с поверхности и уносились газовым потоком. Двухфазный слой начинает образовываться через 70...80 мкс. В экспериментах фиксировались высота гюдъема отдельных частиц и высота верхней границы сплошного слоя. Приведены зависимости этих параметров от времени для различных значений числа Маха (частицы оргстекла и бронзы) и начальной плотности. Основываясь на наблюдении, что отдельная частица, лежащая на гладкой поверхности, не поднимается до тех пор, пока не натолкнется на преграду (шероховатость или другую частицу), авторы высказали следующие соображения относительно механизма подъема дисперсной фазы. Решающим фактором они считают столкновения между частицами, которые приводят к росту шероховатостей в слое на поверхности подложки, разрыхлению засыпки и росту ее толщины, затем подъему порошка и образованию двухфазного слоя. Эти столкновения имеют место только в области, прилегающей к поверхности засыпки. В результате столкновений частицы приобретают вращательное движение, и вертикальная составляющая скорости частицы может возникнуть как вследствие упругого отражения, так и под действием силы Магнуса. Приведены некоторые теоретические оценки вклада каждой [c.189]

    Важной геохимич. функцией растений является фотосинтез-, в течение года все растения усваивают ок. 175 млрд. мг углерода, т. е. за 300—400 лет потребляется количество СОа, равное общему содержанию ее в воздухе. Каждые 5—6 млн. лет растения разлагают количество воды, равное объему всей гидросферы. Т. обр., живые организмы являются активными участниками круговорота веществ в природе. Прямо влияя на состав атмосферы и связанный с нею комплекс атмосферных явлений, живая природа тем самым косвенно способствует изменению поверхности литосферы разрушению (выветриванию) горных пород, миграции входящих в их состав химич. элементов и последующему их рассеянию или концентрированию с образованием новых минеральных форм. Активное влияние растений на литосферу заключается в химич. разложении пород под действием выделяемых кислот (напр., гуминовых) и механич. их разрушении под действием фактора роста. В процессе жизнедеятельности многие организмы усваивают и концентрируют нек-рые химич. элементы кремний (водоросли, губки, наземные растения), кальций (водоросли, моллюски, корненожки и позвоночные), ванадий (оболочники, иглокожие), иод (губки, водоросли) и т. д. После их отмирания образуются толщи осадочных пород, обогащенных этими элементами, или состоящих целиком из скелетов организмов (коралловые и раковинные известняки, диатомиты и др.). Не менее важная роль принадлежит бактериям, образующим скопления многих марганцовых и серных руд. Комплекс горных пород — нродуктов органич. жизни — наз. биолитами. Горючие (органические) биолиты наз. каустобиолитами (торф, угли, нефть, газы природные горючие). [c.217]

    Комплементом называют многокомпонентную самособирающуюся систему белков крови, которая играет одну из ключевых ролей в поддержании иммунного гомеостаза. Инициация процесса активации (самосборки) системы комплемента может осуществляться двумя путями классическим и альтернативным, причем в первом случае инициирующим фактором является комплекс антиген-антитело. Инициация процесса активации комплемента комплексом антиген-антитело не единственный, но важнейший в биологическом отношении путь активации, так как в значительной степени именно посредством системы комплемента антитела ири участии антигена способны очень глубоко влиять на самые различные системы поддержания гомеостаза многоклеточных организмов фибринолитическую систему и систему свертывания крови, регуляцию проницаемости сосудистого русла, хемотаксис, образование и высвобождение пептидов, управляющих сократимостью гладкой м скулат ры, и ряд других систем. [c.166]


Смотреть страницы где упоминается термин Факторы, влияющие на процесс образования комплексов: [c.45]    [c.687]    [c.372]    [c.463]    [c.182]    [c.127]    [c.217]    [c.225]    [c.345]    [c.64]    [c.526]    [c.1478]    [c.1478]    [c.75]    [c.313]    [c.87]   
Смотреть главы в:

Комплексоны -> Факторы, влияющие на процесс образования комплексов

Комплексоны -> Факторы, влияющие на процесс образования комплексов




ПОИСК





Смотрите так же термины и статьи:

Комплексы образование

Образования пар процесс

Факторы процесса

влияющие фактор



© 2025 chem21.info Реклама на сайте