Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Полимеры термическая устойчивость

    Свойства и применение кремнийорганических полимеров и диэлектриков на их основе. Наиболее существенное достоинство кремнийорганических полимеров — высокая термическая устойчивость (рис. 82). [c.273]

    Макромолекулы пептона содержат 45,5% хлора. Однако хлор-метильные группы полимера связаны с теми углеродными атомами основной цепи, при которых не имеется атомов водорода. При нагревании полимера это исключает возможность отщепления хлористого водорода, обычно ускоряющего дальнейшую термическую деструкцию таких полимеров, как поливинилхлорид, поливинилиденхлорид, и кроме того, придает пептону высокую термическую устойчивость. Расплав пентона имеет сравнительно низкую вязкость, что облегчает его переработку в изделия методом литья под давлением. Коэффициент термического расширения пентона значительно ниже, чем для полиэтилена, и примерно аналогичен коэффициенту расширения полистирола и полиами- [c.406]


    Полученные серосодержащие полимеры термически устойчивы на воздухе до температуры 280°С, при нагревании до 450° теряют в весе до 40% (рнс. 1). [c.72]

    Полимеры тетрафторэтилена характеризуются высокой стойкостью к действию различных агрессивных сред и хорошей термической устойчивостью. Однако использование их в качестве защитных покрытий металлов затруднительно вследствие плохой адгезии политетрафторэтилена ко всем известным в настоящее время клеевым пленкам, при помощи которых можно было бы произвести крепление этого полимера к металлической поверхности. Для улучшения адгезионных свойств пленок политетрафторэтилена применен метод привитой сополимеризации его со стиролом. Пленки опускают в прививаемый мономер и подвергают у-облучению. При небольшой интенсивности облучения количество привитого стирола может достигнуть 10/О вес., однако пленка заметно увеличивается в объеме. При интенсивности облучения 350 рентген/час и длительности его воздействия 160 час. вес пленки удваивается. Еще более интенсивное облучение политетрафторэтилена и стирола приводит к заметному возрастанию скорости гомополимеризации стирола, поскольку в этих условиях он полимеризуется быстрее, чем успевает проникнуть во внутренние слои пленки полимера. Очевидно, в начале реакции прививка полистирольных боковых цепей происходит только на поверхности пленки. Образующийся в ее верхнем слое привитой сополимер набухает в мономере, и молекулы стирола проникают в следующие слои политетрафторэтилена. Следовательно, для получения однородного сополимера необходимо, чтобы [c.552]

    При применении в качестве неподвижных фаз полимеров термическая устойчивость играет большую роль, чем упругость пара, так как последняя при достаточно высоких температурах ничтожно мала, тогда как термическое разложение может иметь место. [c.70]

    Полимеры на основе этого спирта являются самыми дешевыми продуктами. Они обладают многими ценными свойствами, в том числе высокой механической и термической устойчивостью. Они применяются в качестве покрытий и клеев. Было также обнаружено, что фуриловый спирт с солянокислым анилином может использоваться для придания бетонам и другим строительным материалам водо-и бензостойкости. [c.360]

    При применении полимеров термическая устойчивость играет большую роль, чем давление пара, так как последнее нри достаточно высоких молекулярных весах ничтожно мало. Следует обратить особое внимание на то, что твердый носитель иногда является прекрасным катализатором для разложения, что неподвижная фаза обладает большой поверхностью и что газ-носитель может содержать примеси (О2, Н2О), которые вызывают разложение и способствуют ему. [c.93]


    Полимеры термически устойчивы (по данным ТГА, при температуре [c.156]

    Существенным недостатком описанных клеевых пленок, стеклопластиков и защитных покрытий является их сравнительно низкая термическая устойчивость полимер приобретает повышенную пластичность при 130—180 . [c.413]

    Эфиры титановой кислоты и многоатомных спиртов нерастворимы в воде и обладают повышенной термической устойчивостью. Эти наблюдения были использованы для модифицирования свойств иолимеров, относящихся к группе полимерных спиртов. При действии эфиров ортотитановой кислоты на поливиниловый спирт, феноло-формальдегидные полимеры и эпоксидные полимеры получены новые титанорганические полимеры, нерастворимые ь воде. [c.499]

    Непредельные мономеры, содержащие бор, не дают высокомолекулярных полимеров. Низкомолекулярный полимер (РН2-ВН,) , получаемый взаимодействием фосфина с В. Н, , обладает высокой стабильностью до 250". Можно предполагать, что при замене-н этом полимере атомов водорода атомами галоида или фенильными группами термическая устойчивость полимера станет еще выше. [c.505]

    Химически стойкие и термически устойчивые полимеры получаются при сочетании в металлорганических соединениях ковалентных и координационных связей. Такие полимеры названы клешневидными металлорганическими полимер а-м и. Исходными мономерами могут служить ацетилацетонаты цинка, магния, меди, никеля, кобальта, бериллия и других металлов. Ацетилацетонаты взаимодействуют с тетракетонами с отщеплением [c.506]

    Полисорб и порапак. В настоящее время широко распространены и другие термически устойчивые полимеры, например полисорб-1 [c.167]

    Присоединение аминов к полиэпоксидам не сопровождается выделением каких-либо побочных продуктов. Действие алифатических и ароматических ди- и полиаминов на полиэпокснды существенно различно.. Алифатические амины легко вступают в реакцию с полиэпоксидами при комнатной температуре, образуя редко сшитые полимеры,. Для улучшения термической устойчивости полимера и повышения его твердости, реакцию присоединения амина стремятся провести до образования возможно более высокомолекулярного соединения. Для этого реакцию проводят при 80— 100°. Повышение температуры увеличивает реакционную способность макромолекул и вторичных водородных атомов амина. [c.412]

    Если термическая устойчивость кремнийорганических полимерных соединений определяется структурой основной цепи, т. е. скелета полимера, то другие практически ценные свойства обусловлены неполярными углеводородными радикалами, обрамляю- [c.273]

    Чрезвычайно разнообразны кремнийорганические соединения (полимеры), сочетающие термическую устойчивость, характерную для неорганических веществ, с эластичностью и растворимостью органических высокомолекулярных соединений. Большой вклад в разработку методов получения кремнийорганических полимеров внесен советским ученым К. А. Андриановым, удостоенным Государственной премии за эти работы. [c.391]

    В производстве смол фурфуриловый спирт имеет, пожалуй, большее значение и нашел более широкое промышленное применение, чем фурфурол. Фурфуриловый спирт легко превращается в смолы, которые обладают рядом очень ценных свойств, в том числе механической и термической устойчивостью. Широкое применение этих смол в промышленности объясняется не только тем, что это самые дешевые полимеры, получаемые в последнее время, но и большим разнообразием их свойств. [c.215]

    Преимущества способа возможность применения мало-реакционноспособных мономеров, сравнительная простота технол. схемы, высокие выход и степень чистоты образующегося полимера, возможность формования из полученного расплава полимера волокон и пленок. Недостатки необходимость использования термически устойчивых мономеров и проведения процесса при высоких т-рах, длительность процесса, использование катализаторов. [c.634]

    В общй11 этот тип полиэтерификации применим ко всем системам, в которых мономеры и Полимеры термически устойчивы при температурах выше температуры плавления полимеров, а гликоль достаточно летуч, чтобы можно было полностью удалить его избыток под вакуумом. [c.28]

    Далее, донорная способность элемента сильно уменьшается под действием электроотрицательных групп. Несмотря на это, получены тримеры и тетрамеры (СРз аРВНа, и эти полимеры термически устойчивы до 200° [22]. Исходя из того, что группа СРд влияет на донорнз ю способность атома, с которым она связана [7], трудно объяснить, почему вообще полимеризуются группы (СРз)2РВН2, так как атом фосфора обладает недостаточной для этого основ- [c.138]

    Физические свойства полисилоксанов зависят от характера и количества радикалов, связанных с атомом кремния, а также от соотношения в полимере углеродных атомов и атомов кремпия. Полимеры с высоким содержанием углерода представляют собой вязкие жидкости или высоксэластичные материалы. По мере уменьшения количества углерода нарастает вязкость и снижается растворимость полимера и он переходит в хрупкое стекловидное состояние. С увеличением размера боковых ответвлений (органических радикалов) в полимере начинают преобладать свойства, характерные для полиуглеводородов возрастает растворимость полимера в неполярных растворителях и его эластичность, но уменьшается механическая прочность, снижается температура размягчения и ухудшается термическая устойчивость. Высшие полиалкилснлоксаны обладают меньшей кислородоустойчивостью по сравнению с низшими. С заменой алкильных радикалов арильными увеличивается межмолекулярное взаимодействие, что выражается в повышении термической устойчивости и кислородо-устойчивости полимеров и возрастании жесткости. [c.485]


    Наличие винилиденовой группировки открывает чрезвычайные возможности для модификации полиэтилена. Так, например, окисление двойной связи с последующим карбоксилирова-нием придает полиэтилену свойства бумаги, т. е. способность к удерживанию красителей. Введение аминогрупп может придать полимеру термическую устойчивость, добавка элементоорганических соединений может увеличить адгезионные свойства и т. д. Кроме того, сшивка по двойной связи может придать полиэтилену пространственную (сетчатую) структуру, что повысит его физико-механические характеристики. [c.114]

    Пластификация битумных мастик расширяет температурный интервал эластично-пластичного состояния, понижает температуру хрупкости. Увеличение количества дисперсной среды путем введения нефтяных масел снижает теплостойкость масти) при некотором повышении пластичности при низких температурах. Использование в качестве пластификатора мастик некотор 1Х полимеров (полидиена и др.), имеющих более низкую температу11у, чем битум, позволяет получать мастики с повышенной пластичностью, с более низкой температурой хрупкости и в то же время с повышенной эластичностью и термической устойчивостью. Так, введение в битуморезиновую мастику (BH-IV (93%) + резина (7%)] золеного масла изменяет вязкость ее при - -40, + 60,+ 80° С соответственно в 7,5 13 8,5 раза, а введение полидиена (5%) — только в 1,4 2,6 и 2,5 раза при увеличении пластичности при отрицательной температуре. Битумо-нолидиеновая мастика течет как ньютоновская жидкость при температуре свыше + 240° С, битумо-минеральная и битумо-резиновая— при +180° С (соответственно вязкости 1 Н-с/м и 12 Н-с/м ). [c.158]

    Полимер перекиси фталила обладает малой термической устойчивостью и, разрушаясь при нагревании, образует бимакрорадикалы  [c.185]

    В хлорированном каучуке количество хлора колеблется от 64 до 65%. Отсутствие ненасыщенных групп в макромолекулах хлоркаучука придает ему более высокую атмосферостой кость, повышает его термическую устойчивость и стойкость к действию растворов кислот и щелочей. Пленки хлоркаучука выгодно от-. шчаются от пленок ненасыщенных полимеров также хорошей адгезией к металлическим поверхностям. Вследствие высокой полярности хлоркаучук хрупок и тверд, хотя и сохраняет пленкообразующие свойства. Для придания хлорированному каучуку эластичности е1 о совмещают с эластичными полимерами, маслами или пластификаторами. [c.247]

    В зависимости от природы органических радикалов, связанных с кремнием, термическая устойчивость некоторых кремнийорганических соединений довольно высока. Например, заметный пиролиз фенилхлорсиланов и метилхлорсиланов происходит при температурах свыше 500°С. До 200°С связь —5 —С— устойчива к окислению и не ря.эрушается многими минеральными кислотами и щелочами. В то же время связь —51—51— разрушается уже при нагревании до 200°С и неустойчива к действию различных химических реагентов (например, щелочи). При окислении эта связь превращается в силоксановую — 51—0—51—, которая содержится в большинстве кремнийорганических и неорганических (кварц, асбест, силикатные стекла) полимеров. Силоксановая связь исключительно прочна— выдерживает очень высокую температуру (1 л 5Ю2=1713°С). Однако термическая устойчивость кремнийорганических соединений значительно уступает кварцу или силикатам. Это связано с окислением органических радикалов, соединенных с атомом кремния. Силоксановая связь устойчива и ко многим химическим реагентам. [c.186]

    Полимеры первой группы отличаются от полимеров второ1( группы большей жесткостью макромолекулярных цепей, высокой степенью кристалличности и большей плотностью, а следовательно, большим межмолекулярным взаимодействием. При одинаковом среднем молекулярном весе полимеры первой группы менее растворимы, имеют более высокую температуру размя1чения и большую твердость по сравнению с полимерами второй группы. Частое расположение арильных звеньев в макромолекулах придает полимеру повышенную термическую устойчивость. [c.350]

    Сочетание этиленовых звеньев с фениленовыми и строго линейная структура макромолекул полипараксилилена придают ему высокую термическую устойчивость, уменьшают его хрупкость и сообщают полимеру некоторую пластичность при высоких температурах, что облегчает условия его переработки. [c.351]

    В отличие от поливинилиодидов, обладают высокой термической устойчивостью. Полимер кристаллизуется, легко подвергается ориентации методом горячей вытяжки, температура его плавления значительно выше температуры плавления пептона и достигает 270°. ДJtя полимера характерна высокая твердость и прочность. При замещении атомов водорода в метильных группах гидроксильными группами в полимере возникают многочисленные водородные связи  [c.408]

    Термическая устойчивость полисилоксанов наглядно иллюстрируется сопоставлением степени их термической деструкции и термической деструкции органических полимеров. На рис. 120 приведены результаты измерения потерн веса полисилокса-па и линейного пoJrнизorlpeнa в процессе их тегглового старения. [c.475]

    При замене винильной или аллильной группы акриловой или метакриловой группой двойная связь еще более отдаляется от атома кремния, что повышает активность этой связи в реакции полимеризации. Например, силанметакрилаты легко полимеризуются в присутствии перекисей при атмосферном давлении и 65 . Образующиеся полимеры представляют собой твердые, бесцветные, прозрачные, стекловидные материалы. По термической устойчивости эти полимеры мало отличаются от нолиметилметакрилата.  [c.490]

    Полимеры не растворяются в органических растворителях. Наибольшей термической устойчивостью обладают к.лешневидные полимеры, содержащие цинк, которые не разлагаются даже при 380 .. Четаллы переменной валентности, применяемые для комплексообра-зования, способны окисляться до более высокой степени, и реакции окисления могут каталитически влиять на термическое разложение полимера. [c.507]

    Каучуки, модифицированные методами блоксополимеризации или привитой сополимеризации, отличаются высокой прочностью, устойчивостью к истиранию, превосходят исходные каучуки по атмо-сферостойкости и термической устойчивости и сохраняют такую же высокую эластичность, как н вулканизаты полимеров ненасыщенных углеводородов. [c.539]

    Термическая деструкция протекает при нагревании полимеров и в значительной степени зависит от их химического строения. Этот процесс идет по радикальному механизму и сопровождается разрывом химических связей и снижением молекулярной массы полимера. Термическая деструкция ускоряется в присутствии соединений, легко распадающихся на свободные радикалы. Однако эта деструкция может идти и по ионному (ионно-радикальному) механизму. При повышенной температуре скорость деструкции возрастает. Для различных полимеров существует свой порог термической устойчивости. Большинство из них разрушается уже при 200— 300 С, но имеются и термостойкие пйлимеры, как, например, политетрафторэтилен, который выдерживает нагревание свыше 400 С. [c.410]

    В кремнийорганических полимерах проявляется преимущество силоксановой связи — ее высокая термическая устойчивость. Вместе с тем углеводородные радикалы придают полимерам гибкость, эластичность и способность растворяться в органических жидкостях. Чем больше число органических радикалов, приходящихся на один атом кремния, или чем меньше число поперечных связей, тем выше эластичность полимера. Наиболее эластичны линейные кремнийорганические полимеры, у которых на один атом кремния приходятся два органических радикала. В этом случае полимерные цепи связаны между собой только межмолекулярными силами, дающими возможность цепям, в отличие от химических связей, перемещаться друг относительно друга. Поперечные химические связи повьпиают твердоегь и прочность кремнийорганических полимерных веществ. Если число поперечных связей невелико и расположены они редко, то соединения более прочны, чем линейные, и в то же время сохраняют высокую гибкость и эластичность, свойственную резинам. Когда образуются пространственные структуры с частыми поперечными связями, получаются прочные твердые нерастворимые вещества, обладающие различной степенью эластичности в зависимости от числа поперечных связей. [c.266]

    Техника предъявляет к резиновым изделиям самые разнообразные требования. В одном случае необходима большая прочность, в другом—высокая эластичность, в третьем—термическая устойчивость. Все эти требования невозможно удовлетворить одним каким-нибудь типом каучука. В связи с этим промышленность выпускает десятки сортов синтетического каучука, полученных на основе самых различных химических соединений. Выше указывались ценные свойства хлоропреновых каучуков и бутилкау-чука. Каучуки на основе кремнийорганических соединений отличаются сохранением эластических свойств как при низких, гак и при высоких температурах каучуки на основе фторорганических соединений сочетают высокую термостойкость с почти абсолютной химической устойчивостью каучуки, полученные сополиме-ризацией дивинила с акрилонитрилом, хорошо выдерживают действие бензина и других нефтепродуктов. Наиболее массовым типом каучука, широко применяемым для изготовления шин, является каучук, получаемый сополимеризацией дивинила со стиролом (стр. 486). Эти каучуки отличаются хорошей прочностью и поэтому изготавливаются в громадных количествах. Однако по эластичности и некоторым другим свойствам они все же уступают натуральному каучуку, вследствие чего до последнего времени он являлся незаменимым для целого ряда изделий. Эти ценные свойства натурального каучука были связаны со строением полимерной цепи, которое отличалось строго регулярным расположением в пространстве отдельных звеньев. Такую структуру долго не удавалось воспроизвести в синтетических каучуках. Лишь в 50-х годах в СССР и в других странах было найдено, что проведение полимеризации в присутствии комплексных металлорганических катализаторов приводит к образованию полимеров регулярной структуры. [c.104]

    Образование амидов при взаимодействии первичных или вторичных аминов с карбоновыми кислотами — реакция хорошо известная в органической химии. Эта же реакиия с дифункциоиальными мономерами является удобным методом получения полиамидов и родственных им полимеров. Реакция обычно проводится при нагревании смеси мономеров при температуре более высокой, чем температура плавления получающегося полимера, и обычно с применением высокого вакуума или в токе инертного газа (иногда и то и другое), что способствует Удалению последних следов воды и тем самым увеличению степени завершенности реакции. Проведение реакции поликонденсации в расплаве ограничивается термической устойчивостью исходных мономеров и получаемого полимера. [c.79]


Смотреть страницы где упоминается термин Полимеры термическая устойчивость: [c.177]    [c.414]    [c.238]    [c.239]    [c.490]    [c.495]    [c.290]    [c.87]    [c.205]    [c.294]    [c.205]   
Руководство по газовой хроматографии (1969) -- [ c.93 ]

Руководство по газовой хроматографии (1969) -- [ c.93 ]

Руководство по газовой хроматографии (1969) -- [ c.93 ]




ПОИСК





Смотрите так же термины и статьи:

Полимеры термические



© 2024 chem21.info Реклама на сайте