Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Пределы зажигания и распространения пламени

    Область существования горючей среды определяют концентрационные пределы распространения пламени (или пределы воспламенения), т. е. граничные концентрации горючих паров в воздухе, при которых пламя, возникающее от постороннего источника зажигания, способно самостоятельно распространяться по смеси сколь угодно далеко от источника. [c.16]


    При определении Г. газов считают, что горючими являются те газы, для к-рых существует область воспламенения, т.е. интервал концентраций, в пределах к-рого они способны воспламеняться от источника зажигания с послед. распространением самостоят. горения по смеси. Если при зажигании в сосуде смеси газа с окислителем пламя распространяется только на часть объема, газ считается трудногорючим. Г. газов экспериментально определяют по визуально наблюдаемому распространению пламени в стандартной стеклянной трубе диам. 50 мм и выс. 1500 мм при зажигании смеси искрой у открытого ниж. конца или в сосуде диам. 300 мм и выс. 800 мм. [c.600]

    В качестве основных показателей пожаро- и взрывоопасности используют температуру вспышки и воспламенения паров твердых веществ и жидкостей в воздухе. Термином вспышка обозначают явление быстрого сгорания смеси горючих паров и воздуха по месту зажигания, не сопровождающееся распространением пламени по всему объему. За температуру вспышки принимают самую низкую температуру твердого или жидкого вещества, при которой над его поверхностью образуется достаточное для вспышки от источника зажигания количество пара. Выделяющейся при этом энергии в области зажигания не хватает для прогрева близлежащей зоны до температуры воспламенения, поэтому пламя не распространяется по всему объему. За температуру воспламенения принимают минимальную температуру твердого или жидкого вещества, при которой над его поверхностью выделяется достаточное для устойчивого горения после удаления источника зажигания количество пара. Таким образом, температура воспламенения компактного вещества связана с достижением над его поверхностью нижнего концентрационного предела воспламенения пара этого вещества. Нижние и верхние концентрационные пределы воспламенения и температура самовоспламенения (см. раздел 1.2.9) служат показателями взрыво- и пожароопасных свойств газообразных и аэродисперсных систем. [c.77]

    Пределы воспламенения являются теми предельными условиями, при которых при касании источника зажигания газовой смеси возникает непрерывное распространение пламени. В случае зажигания искрой они являются предельными условиями искрового зажигания. Однако по мере уменьшения содержания горючего в смеси (при приближении к нижнему пределу) величина содержания горючего в смеси в качестве границы, отделяющей область воспламенения, будет неоднозначной. В этом случае будем иметь некоторый интервал значений содержания горючего. В пределах этого интервала в одних экспериментах пламя может распространяться, в других — нет. Многократное повторение экспериментов позволяет определить вероятность успешных (или неуспешных) зажиганий. [c.26]


    Для того чтобы пламя начало распространяться по смеси, должны соблюдаться следующие условия. Во-первых, энергия начального очага пламени (мощность искры) должна быть достаточно высокой. При недостаточной мощности искры тепло, выделившееся в начальном очаге пламени, рассеивается в объеме свежей смеси и распространения пламени не происходит. Во-вторых, содержание топлива в смеси должно находиться в определенных пределах, ниже и выше которых распространения пламени не происходит при любой мощности поджигающей искры. Различают верхнюю границу зажигания, получаемую при наибольшем содержании горючего в смеси, и нижнюю — при наименьшем содержании горючего в смеси. В табл. 16 приведены значения концентрационных границ зажигания (пределов распространения пламени) для смесей некоторых горючих с воздухом. [c.98]

    Данные, иллюстрирующие влияние состояния реакционного сосуда, его размеров и материала стенок, расположения источника зажигания, направления распространения пламени и т. д., приведены в табл. 6.9. Из этих данных (хотя и несколько противоречивых) следует, что диапазон условий существования взрывоопасных смесей расширяется, если воспламенение производится у нижнего конца трубы и пламя распространяется вверх. Чем больше размеры реакционного сосуда (объем бомбы, диаметр трубы), тем слабее его влияние на пределы распространения пламени. Экспериментально установлено, что они слабо зависят от диаметра взрывной трубы, если он больше примерно 50 мм, объем сферы — 2000 см . При уменьшении реакционного сосуда пределы сближаются, сливаясь вместе при некоторых его конечных размерах. [c.281]

    Количество первичного воздуха в газовоздушной смеси является одним из основных факторов, влияющих на скорость распространения пламени. В смесях, в которых содержание газа превышает верхний предел его воспламеняемости (взрываемости), пламя вообще не распространяется. С увеличением количества первичного воздуха в смеси скорость распространения пламени увеличивается, достигая наибольшей величины при содержании воздуха около 90% от теоретически необходимого. Из этого следует, что при увеличении подачи первичного воздуха в горелку создается смесь, более бедная газом, способная гореть быстрее и вызвать проскок пламени внутрь горелки. Поэтому при увеличении нагрузки горелок увеличивается сначала подача газа, а затем воздуха, а при уменьшении нагрузки наоборот. По этой же причине в момент зажигания горелок первичный воздух не должен в них поступать, горение сначала идет за счет вторичного воздуха и по мере увеличения нагрузки горелок в них подают первичный воздух. [c.150]

    Другой характерный режим распространения пламени может установиться при поджигании смеси у открытого конца длинной трубы, заполненной горючей смесью. Сначала, в районе точки зажигания, возникает сферическое пламя. После его соприкосновения со стенками трубы пламя приобретает форму части сферической поверхности, вырезаемой постоянным сечением трубы. Так как радиус этой сферы неограниченно возрастает, фронт пламени становится все более плоским, совпадая в пределе с поперечным сечением трубы. [c.138]

    Если увеличивать размеры зажигающей поверхности вплоть до полного окружения ею объема горючей смеси, то получится непрерывный переход от зажигания к воспламенению. Если же увеличивать мощность местного зажигающего импульса, то возникает переход к другому типу критических условий, которые принято называть концентрационными пределами. Концентрационным пределом называется такой состав смеси, при котором становится невозможным зажигание от сколь угодно мощного импульса. Эти пределы хотя и зависят от начальной температуры смеси, но лишь весьма слабо, почему они и называются концентрационными. По существу концентрационный предел есть предел распространения пламени. Горючую смесь нельзя зажечь сколь угодно мощным импульсом в том и только в том случае, если пламя вообще не может в ней распространяться. Для распространения пламени существенна не начальная температура, а температура, развивающаяся при горении при большом тепловом эффекте реакции она весьма слабо зависит от начальной температуры. Именно поэтому пределы распространения пламени лишь сравнительно слабо зависят от начальной температуры. [c.262]

    В книге сжато и строго изложены основы теории горения и обобщены основные экспериментальные результаты, полученные при изучении процессов горения. Рассмотрены фундаментальные вопросы воспламенения (пределы воспламенения, самовоспламенение, искровое зажигание, зажигание накаленной поверхностью) и горения (пламя и его распространение, перемешанные и диффузионные пламена, скорость горения, газодинамика горючей смеси и т. д.), методы измерения скорости горения, воздействие на горение акустических полей и поля силы тяжести, горение одиночных капель и аэровзвесен. [c.4]

    В опытах, проводившихся в трубе диаметром 18 мм [24], при воспламенении стехнометрической метановоздушной смеси детонационной волной не только не удавалось осуш,ествить стационарной детонационной волны, но возникающее пламя угасало на расстоянии 20—30 см от входа инициирующей детонационной волны в метановоздушную смесь. Но в опытах Пеймана и Шепхерда [119] при воспламенении той же метановоздушной смеси в трубе диаметром 30 см при помощи детонатора весом более 50 г наблюдалось возникновение нестационарной детонационной волны со скоростью в пределах 1820—1950 мкек. Наконец, в опытах Когарко 1958 г. [15] в трубе такого же диаметра с зажиганием навеской взрывчатого вещества до 70 г было зарегистрировано распространение стационарной детонационной волны со скоростью около 1600 мкек в воздушных смесях метанистого газа в пределах концентраций 6,3—13,5% детонационная волна разрушалась при переходе в трубу диаметром 22 мм [c.339]


    В первый момент после поджигания смеси пламя медленно распространяется по трубе, затем его скорость возрастает до очень большого значения, которое в дальнейшем не изменяется. Максимальная скорость, с которой распространялось пламя, была постоянной для каждой смеси газов и достигала 1500—3500 м1сек. Явление распространения пламени с такой высокой скоростью получило название детонации или детонационного распространения пламени. Дальнейшие исследования дали возможность установить ряд специфических особенностей этого явления. Так, детонационное распространение пламени наблюдалось только в смесях, характеризув щихся высокой нормальной скоростью распространения пламени. Скорость детонации изменялась с изменением состава смеси. Отмечались предельные значения состава смеси, выше и ниже которых смесь не детонировала (табл. 19). При этом концентрационное пределы детонации или детонационные границы были более узкими, чем границы зажигания. Скорость детонации практически не изменялась при изменении диаметра труб (если он больше некоторого малого значе-вия), кривизны труб, начального давления, температуры смеси и условий позади фронта. [c.118]

    Воспламеняющейся смесью обычно считается такая смесь, в которой пламя может неограниченно распространяться от источника зажигания. Иногда можно наблюдать, как устойчивое пламя в смеси, находящейся в пределах воспламенения, гаснет при ирою-ждепии суженного пространства. Очевидно, стенки способны оказывать некоторое отрицательное влияние на пламя. Такое влияние стенок на распространение пламени называется гасящим действием стенок. Минимальный диаметр или минимальные размеры прямоугольного отверстия, через которое может еще проходить пламя, принято называть критическим расстоянием, или расстоянием гашения [9]. [c.15]

    В предыдущей главе было показано, что искра приводит к возникновению распространяющегося по всему объему пламени лишь в том случае, если выполнены некоторые критические условия. Зажигающая способность определяется как источником зажигания, так и свойствами смеси. При изменении состава смеси могут быть достигнуты некоторые границы, вне которых даже самая мощная искра не способна вызвать распространение пламени. Наилучшим образом это положение можно проиллюстрировать на классическом примере горения шахтерской лампочки в атмосфере, содержащей горючий газ. На фиг. 7 приведены фотографии, показывающие влияние увеличения содержания метана в воздухе [1]. Вокруг первоначального маленького пламени возникает значительно больший по размеру колпачок несмотря на то, что в нем происходит горение, пламя не может распространиться далее, чем на некоторое определенное расстояние. Иными словами, в той части объема, которая подогревается лампой, бедная смесь реагирует очень быстро. Выделяющегося при этом тепла недостаточно, однако, для того, чтобы вызвать реакцию в близлежащих слоях газа. С увеличением процента метана в смеси колпачок удлиняется, но распространение пламени все же еще не может иметь места. Током воздуха колпачок может быть сдут со своего места и пройти некоторое расстояние до того oмeнтa, когда он потухнет. Если концентрация метана превысит некоторую критическую величину, то колпачок оторвется от лампы, причем в этом случае он не потухнет, а приведет к воспламенению смеси. Эта критическая концентрация обычно называется нижним концентрационным пределом. При дальнейшем увеличении содержания метана будет достигнуто другое критическое значение, именуемое обычно верхним концентрационным пределом. В более богатых смесях распространение пламени опять невозможно. [c.155]

    Явления, наблюдаемые при распространении пламени в сосудах, размеры которых примерно одинаковы во всех направлениях (какими являются, например, куб или короткий цилиндр), в основном такие же, как при распространении в сферических сосудах. В начале процесса пламя имеет сферическую форму, а в конце вид фронта пламени определяется формой сосуда. При распространении пламени в длинных трубках наблюдается, однако, целый ряд новых явлений. В трубках, закрытых с одного конца, при поджигании смеси у противоположного открытого конца часто возникает пламя, которое распространяется на некотором участке с постоянной скоростью (равномерное распространение), затем ускоряется, приводя к колебательным режимам, и, наконец, если состав смеси лежит между некоторыми определенными пределами, заканчивается в виде детонационной волны [40—42] (см. гл. XIV). Согласно данным Уилера, Пэймэна и их сотрудников, воспроизводимость измерения скорости равномерного распространения пламени имеет место только при строгом выполнении некоторых определенных условий у открытого конца трубки в частности, зажигание должно производиться не слишком далеко от него. Оказывается, что скорость равномерного распространения зависит от направления движения она максимальна при движении пламени вверх и минимальна прн движении вниз. Скорость увеличивается также при увеличении диаметра трубки [43]. Бон, Фрэзер и Уинтер не смогли получить воспроизводимых результатов при исследовании быстро горяш,их смесей в некоторых определенных пределах изменения состава [44]. Хотя пламя проходило некоторое расстояние с постоянной скоростью, однако значения этой величины менялись от опыта к опыту. [c.191]

    Бензины с большим октановым числом. Мощность двигателя внутреннего сгорания тем больше (при прочих равпых условиях), чем больше степень сжатия горючей смеси в цилиндре в момент зажигания. Однако опыт показал, что нельзя сжимать смесь выше некоторого предела, так как в этом случае горение смеси протекает ненормально (детонация), что проявляется в характерном металлическом шуме — стуке в моторе и в значительном снижении мощности мотора. (Термин детонация не вполне удачен, так как явление детонации в газах несколько отличается от формы сгорания в двигателях.) В нормальных условиях при зажигании искрой смеси горючего газа с воздухом пламя распространяется из исходной точки по всему объему газа в виде узкой сравнительно медленно продвигающейся зоны (12—24 м1сек). Во время детонации эта зона продвигается сначала нормально, но затем скорость распространения резко повышается до 300—800 м/сек. Возникающая волна сжатия (обусловливающая характерный стук) ведет к сильному повышению давления еще до момента, подходящего для произведения механической работы. Можно было доказать, что детонация в двигателе обусловлена медленным окислением, протекающим во взрывчатой смеси, еще не тронутой пламенем. При этом смесь так сильно нагревается, что она детонирует мгновенно по всей массе, вместо того чтобы постепенно сгорать. [c.401]


Смотреть страницы где упоминается термин Пределы зажигания и распространения пламени: [c.81]    [c.157]    [c.222]   
Смотреть главы в:

Самовоспламенение Пламя и детонация в газах -> Пределы зажигания и распространения пламени

Самовоспламенение, пламя и детонация в газах -> Пределы зажигания и распространения пламени




ПОИСК







© 2025 chem21.info Реклама на сайте