Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Вторичное эмиссионное излучение

    Роль источников света при эмиссионном спектральном анализе очень велика. Источники света воздействуют на исследуемый образец, вызывают поступление паров вещества в светящееся облако и возбуждают спектры атомов и молекул, попавших в зону высокой температуры. Все эти процессы протекают во взаимодействии друг с другом и сопровождаются рядом вторичных явлений, например самопоглощением излучения в облаке, окислением, переносом вещества электродов, фракционированием и пр. Рассмотрение физической природы этих явлений выходит за пределы настоящей книги, обстоятельное изложение их содержится в общих руководствах по спектральному анализу и спектроскопии ). Отметим только, что совокупность процессов, определяющих действие источника света, не поддается строгому расчету, но возбуждение в облаке разряда при некоторой идеализации можно описать теорией термодинамического равновесия [17, 27]. [c.55]


    Механизм возбуждения. Чтобы атом испустил квант рентгеновского излучения hv, ему необходимо сообщить энергию. Это можно осуществить облучением пробы потоком электронов эмиссионная спектроскопия) или рентгеновским излучением достаточной энергии рентгенофлуоресцентная спектроскопия). Практически ввиду более легкого осуществления используют только второй способ возбуждения. Его преимущество заключается еще в том, что возникающий спектр флуоресценции имеет только характеристические спектральные линии, в то время как на эмиссионный спектр накладывается спектр непрерывного излучения. В рентгенофлуоресцентной спектроскопии пробу облучают полихроматическим излучением рентгеновской трубки и наблюдают возникающее вторичное излучение. Для перемещения электрона с занимаемого им основного уровня необходимо, чтобы энергия поглощаемого рентгеновского кванта hv была по меньшей мере равна работе ионизации. Если поглощаемая энергия больше, то избыточная энергия высвобождается в виде кинетической энергии фотоэлектрона. По истечении 10 с ионизированный атом ступенчато переходит в основное состояние. Рассматривая уменьшение энергии электрона при его переходе с верхнего уровня на нижний, можно заметить, что рентгеновский квант излучается не при каждом электронном переходе. Эффективной в этом отношении оказывается только часть переходов (/ij). Остальное число переходов п — () вызывает эмиссию электронов из внешних электронных оболочек атома, поскольку они воспринимают всю энергию, освобождающуюся при осуществлении внутренних электронных переходов, и вследствие этого отрываются от атома оже-эффект). Под выходом флуоресценции W понимают отношение /if/n. Величина W для различных оболочек не одинакова и возрастает с увеличением атомного номера элемента. Зависимость выхода флуоресценции для /С-оболочки от атомного номера элемента можно представить следующей полу эмпирической формулой  [c.201]

    В соответствии с существующей в настоящее время теоретической концепцией получение абсолютно чистых веществ т. е. совершенно не содержащих примесей) принципиально возможно, но только в очень небольшой области концентраций для достаточно большой пробы чистого вещества и за более или менее ограниченный промежуток времени. Для контроля чистоты необходимы особо чувствительные методы анализа. Применение методов ультрамикроанализа позволяет осуществить мечту аналитиков — обнаружение отдельных атомов в матрице вещества. Одним из таких методов является лазерная спектроскопия. Вещество испаряют и атомы селективно возбуждают действием лазерного излучения в узкой области частот. Возбужденный атом затем ионизируется вторичными фотонами. Число испускаемых при этом свободных электронов фиксируют пропорциональным счетчиком. С помощью эффективно действующей лазерной установки можно ионизировать все атомы определяемого вещества. Метод, основанный на использовании этого явления, называют резонансной ионизационной опектро-скопией (РИС). Например, можно определять отдельные атомы цезия. В другом варианте метода — оптически насыщенной нерезонансной эмиссионной спектроскопии (ОНРЭС) — измеряют интенсивность флуоресцентного излучения возбужденных атомов. Чтобы отличить излучение определяемых элементов от излучения других компонентов пробы, длины волн флуоресценции сдвигают воздействием других атомов или молекул. Этим методом также можно определять отдельные атомы вещества, например натрия. [c.414]


    Да означает, что обработанный образец может непосредственно вводиться в хроматограф. При использовании флуориметрического детектора Х1 соответствует максимуму возбуждения (первичная), а Ъ — максимуму эмиссионного излучения (вторичная). [c.71]

    Вторичное эмиссионное излучение. [c.168]

    Таким образом, эмиссионный рентгеновский спектр представляет собой непрерывный фон, перекрытый линиями характеристического излучения. Характеристическое рентгеновское излучение наблюдается не только при бомбардировке электронами, оно возникает также при облучении поверхности электромагнитным излучением большой энергии, достаточной для выбивания внутренних электронов из атомов. Излучение непрерывного спектра при этом не происходит, и характеристический спектр, полученный таким способом, называется флуоресцентным или вторичным. [c.120]

    При облучении некоторых веществ ультрафиолетовым светом возбужденные молекулы этого вещества, возвращаясь в исходное состояние, излучают собственное (вторичное или эмиссионное) излучение, сдвинутое в длинноволновую область по сравнению с возбуждающим Уф излучением. Если молекулы этого вещества находятся в возбужденном состоянии (при облучении одноразовым импульсом УФ-излучения) в течение 10 - Ю с, то такое эмиссионное излучение называется флуоресцентным, а описанное явление -флуоресценцией [1]. [c.56]

Рис. 11. Эмиссионные спектры а — схема эксперимента 1 —рентгеновская трубка, 2— изучаемое вещество, — кристалл-анализатор — первичное рентгеновское излучение, ftV2—вторичное рентгеновское излучение Лл — регистрируемое излучение б — схема переходов и вид линии I — интенсивность регистрируемого излучения Рис. 11. <a href="/info/2754">Эмиссионные спектры</a> а — схема эксперимента 1 —<a href="/info/16960">рентгеновская трубка</a>, 2— изучаемое вещество, — <a href="/info/860529">кристалл-анализатор</a> — первичное <a href="/info/28163">рентгеновское излучение</a>, ftV2—вторичное <a href="/info/28163">рентгеновское излучение</a> Лл — регистрируемое излучение б — схема переходов и вид линии I — интенсивность регистрируемого излучения
    В век быстро развивающейся техники ученому необходимо наблюдать, исследовать и правильно объяснять явления, происходящие на микронном (mikm) и субмикронном уровнях. Растровый электронный микроскоп и рентгеновский микроанализатор— это два прибора с большими возможностями, позволяющие на таком уровне наблюдать и изучать неоднородные органические и неорганические материалы и поверхности. В обоих приборах исследуемая область или анализируемый микрообъем облучаются тонко сфокусированным электронным пучком, либо неподвижным, либо разворачиваемым в растр по поверхности образца. При взаимодействии электронного пучка с поверхностью образца возникают следующие типы сигналов вторичные электроны, отраженные электроны, оже-электроны, характеристическое рентгеновское излучение и фотоны различных энергий. Эти сигналы исходят из специфических эмиссионных областей внутри образца и могут быть использованы для изучения многих характеристик объекта (состава, топографии поверхности, кристаллографической ориентации и т. д.). [c.9]

    Рентгеновская флуоресценция Рентгеновское излучение высокой энергии Рентгеновское излучение, характеристическое для атомов образца Пучок вторичных рентгеновских лучей диспергируется кристаллом. Интенсивность отдельных лучей измеряется детектором излучения (например, пропорциональным счетчиком) Получается простой рентгеновский эмиссионный спектр. Метод используется для качественного и количественного анализа, определения многих элементов в одном образце Определение основных составляющих и примесей в минералах, сплавах и т. п. [c.22]

    На зависимости интенсивности линии рентгеновского эмиссионного спектра от концентрации соответствующего элемента основан рентгеновский флуоресцентный аиализ (РФА), к-рый широко используют для количеств, анализа разл. материалов, особенно в черной и цветной металлургии, цементной пром-сти и геологии. При этом используют вторичное излучение, т.к. первичный способ возбуждения спектров наряду с разложением в-ва приводит к плохой воспроизводимости результатов. РФА отличается экспрессностью и высокой степенью автоматизации. Пределы обнаружения в зависимости от элемента, состава матршц, и используемого спектрометра лежат в пределах 10" -10 %. Определять можно все элементы, начиная с Mg в твердой или жидкой фазе. [c.240]

    В области очень низких давлений рабочая область ионизационны манометров лимитируется так называемым рентгеновским эффектом. Возвращаясь обратно к рис. Ю2, мы видим, что сетка триодной лампы непрерывно бомбардируется электронами с энергией около 150 э В и с интенсивностью, определяемой величиной эмиссионного тока. Эти электроны возбуждают рентгеновское излучение, которое, попадая на коллектор ионов, может вызывать фотоэлектронную эмиссию. Прибор, изме-ряющий коллекторный ток, не выделяет составляющие, обусловленные переносом заряда электронами, уходящими с коллектора, или попадающими на него положительньши ионами. Таким образом, в случае, когда вторичная электронная эмиссия становится уже сравнимой с током ионов, пропорциональность между давлением и ионным током нарушается. В триодных лампах величина вторичного эмиссионного тока эквивалентна ионному току, соответствующему давлению 10 мм рт. ст. Поэтому рассчитывать на разумную точность измерений для давлений нижа 10- мм рт. ст. уже нельзя. Развитие современных ионизационных манометров идет преимущественно по пути снижения рентгеновского ограничения посредством модификации структуры электродов. В этом отношении успешными оказались три подхода к решению задачи резкое уменьшение площади коллектора ионов, физическое разделение и экранирование коллекторных электродов для электронов и для ионов и, наконец, использование магнитных полей для увеличения пробега электронов, что позволяет уменьшить ток электронной эмиссии без снижения чустви тельности манометра, см. уравнение [27]. [c.325]


    Как правило, для успешной разработки приборов необходимо следующее оборудование I) ряд первичных и вторичных приборов (эталонных и образцовых), а также лабораторные градуировочные установки и контрольные приборы для воспроизведения веса, температуры, напряжения, сопротивления, давления, емкости и газовых постоянных 2) инфракрасный спектрофотометр 3) масс-спектрометр 4) эмиссионный спектрометр 5) хроматограф 6) источники излучения и детекторы 7) прецизиониНе электроизмерительные приборы 8) оборудование для измерения pH, а также характеристик окислительно-восстановительных процессов 9) приборы для химического анализа и 10) электрическое и электронное тест-оборудование. [c.478]

    В настоящее время многие лаборатории располагают стандартной аппаратурой для качественного и количественного анализа большинства элементов, за исключением самых легких, с помощью рентгеновских спектров испускания. Интенсивные атомные линии получают либо при электронном возбуждении, либо за счет вторичного возбуждения (флуоресценция, возбуладаемая первичным рентгеновским излучением). Как правило, разрешающая способность подобной аппаратуры недостаточно высока для того, чтобы обнаружить небольшие смещения эмиссионных линий, связанные с изменением химического состояния элемента. [c.129]


Смотреть страницы где упоминается термин Вторичное эмиссионное излучение: [c.209]    [c.512]    [c.71]    [c.282]    [c.71]    [c.308]    [c.506]    [c.506]    [c.327]    [c.116]    [c.308]   
Смотреть главы в:

Введение в аналитическую химию -> Вторичное эмиссионное излучение




ПОИСК





Смотрите так же термины и статьи:

гом эмиссионный



© 2025 chem21.info Реклама на сайте