Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Излучения высокой энергии

    Рассмотрим процессы радиолиза воды и водных растворов. При действии излучений высоких энергий на воду происходит суммарная реакция [c.364]

    Радиационная стойкость. Воздействие на смазочные материалы излучений высоких энергий (у-лучей, а- и р-частиц, свободных электронов) приводит к глубоким химическим изменениям их состава и свойств. Эти изменения зависят от исходного состава смазочного материала и дозы облучения. Суммарная доза до 5-10 — 5-10 рад вызывает существенные изменения свойств смазок. Большие дозы излучения ( >7-10 рад) разрушают волокна загустителя и разжижают смазки. [c.363]


    Под действием излучений высоких энергий происходят деструкция, сшивание полимеров, увеличение ненасыщенности молекулярных цепей, разрушение кристаллических структур. [c.244]

    Излучения высоких энергий обладают сильным химическим действием, однако различие и специфика их действия большею частью обусловлены вторичными процессами, так как первичными являются процессы отделения или возбуждения внутренних электронов. Например, при воздействии на вещество а-частиц последние захватывают электроны, в результате чего образуются электронейтраль-ные атомы гелия и однозарядные ионы. При взаимодействии [c.364]

    Радиационное окисление [5.5, 5.20]. Метод основан на воздействии ионизирующего излучения (V и р-лучи, ускоренные электроны, ускоренные ионы, нейтроны и др.) на обезвреживаемое соединение с получением ионов и возбужденных молекул, которые затем участвуют в реакциях. При действии излучений высоких энергий на разбавленные водные растворы органических соединений возникает большое число окислительных частиц, обусловливающих радикальное окисление. Полнота разложения соединений зависит от вида соединения, его начальной концентрации, продолжительности облучения и температуры стоков. Так, при очистке сточных вод от фенола с начальной концентрацией 100,0 мг/л разложение на 100% происходит через 1,5 ч, а при концентрации 10 мг/л — за 0,33 ч. [c.497]

    Кроме того, в качестве излучений высокой энергии можно использовать протоны, дейтоны, а-частицы, ускоренные в специальных ускорителях (циклотрон, генератор Ван-де-Граафа). Пучки быстрых электронов можно получать, используя линейные ускорители, бетатроны или радиоактивные изотопы некоторых элементов (например, " Зг, Сз и др.). Источником квантов больших энергий, кроме уже указанных искусственно получаемых радиоактивных элементов, могут служить мощные рентгеновские трубки для получения у-излучений можно также использовать торможение быстрых электронов, полученных в ускорителях (бетатроне, линейном ускорителе электронов, генераторе Ван-де-Граафа). Источниками нейтронов, кроме атомных реакторов, могут быть радио-бериллиевые и полоний-берил-лиевые источники или специальные ускорители нейтронов. [c.258]

    Энергия, испускаемая во время радиоактивного распада, является одной из форм электромагнитного излучения высокой энергии. Видимый свет, мик-ро- и радиоволны тоже являются электромагнитным излучением, но меньшей энергии. На, рис. V.1 показаны главные составляющие спектра электромагнитного излучения и их источники. [c.303]


    Дальнейшие исследования показали, что проникающая способность рентгеновских лучей зависит от толщины и природы материала, сквозь который они проходят. Они не могли пройти через такие плотные материалы, как свинец или кость. Сейчас известно, что рентгеновские лучи являются электромагнитным излучением высокой энергии (см. рис. У.1). Они образуются в рентгеновской трубке (рис. У.2), когда катодные лучи сталкиваются с атомами тяжелых металлов — например, серебра. [c.306]

    Электромагнитное излучение высокой энергии, испускаемое при радиоактивном распаде [c.544]

    К ионизирующим относятся электромагнитные излучения высокой энергии - рентгеновские и у-лучи, корпускулярные излучения высокой энергии - быстрые электроны, протоны, нейтроны, дейтроны, а-частицы, осколки деления ядер, ядра отдачи, возникающие при ядерных реакциях, потоки тяжелых ионов [13]. [c.101]

    Для ослабления if-излучений чаще всего используют свинец, вольфрам, а также бетон, сталь и другие материалы. При защите от излучений высокой энергии применяют вольфрам и сталь. Из этих твердых металлов изготовляют особо ответственные части защиты. [c.151]

    Радиолиз существенно отличается от фотолиза. Поглощение излучений, обладающих значительно большей энергией, чем видимые, инфракрасные или ультрафиолетовые лучи, вызывает возбуждение или отрыв электронов от внутренних оболочек атомов. Первичный акт взаимодействия излучений высоких энергий с веществом [c.363]

    Проникая в твердое вещество, излучение в зависимости от величины его энергии может затрагивать только валентные электроны, всю электронную оболочку атомов или же, при достаточно высокой энергии, и атомные ядра. В последнем случае оно производит не только возбуждение электронов, ионизацию, но и смещение атомов данного вещества из их нормальных положений. Зто относится как к электромагнитному излучению (видимому свету, ультрафиолетовым и рентгеновским лучам, 7-излучению), так и к потокам частиц (электронов, ионов, например, протонов или а-частиц и др.). При этом энергия излучения трансформируется частично в тепловую, вибрационную энергию твердого вещества, которая передается соприкасающимся с ним веществам, а частично в электромагнитное излучение сниженной частоты по сравнению с частотой поглощенной лучистой энергии. Местные изменения структуры твердого вещества, возникающие при его взаимодействии с излучением высоких энергий, принято называть радиационными дефектами. Радиационные дефекты, равномерно распределенные по всему сечению луча, проникающего в твердое вещество, создаются фотонами, электронами, а-частицами и т. д. [c.121]

    Многие окислительно-восстановительные реакции, протекающие в водных растворах под действием излучений высоких энергий, [c.365]

    Как правило, срок службы битумных материалов под действием ионизирующего излучения значительно снижается. Степень этого снижения зависит от многих факторов и в частности от природы и мощности источника излучения, а также от продолжительности экспозиции. Мягкое а-излучение, например, проникающее только через тонкий поверхностный слой материала, вызывает при достаточно продолжительной экспозиции существенные, но лишь местные изменения (или разрушения) битумного слоя. Однако иногда воздействие излучения на поверхность может оказаться полезным. Тем не менее проникающее излучение высокой энергии типа 7-излучения, жесткого р-излучения или нейтронного излучения (или их сочетание) может вызвать значительные изменения и (или) разрушение не только на поверхности материала, но и на глубине до 1 м и более. Во всех случаях чем больше продолжительность экспозиции, тем значительнее изменения, вызываемые излучением. Если тонкий слой (типа кровельного битумного материала) разрушается под действием а-, или мягкого излучения, то он теряет свои свойства (происходит ускоренное старение), и его пригодность снижается. Однако если такой слой — только небольшая часть толстого слоя или большой массы материала, ухудшения почти не наблюдается, так как по отношению ко всей массе такое разрушение незначительно и изменение физических свойств всей массы материала практически обнаружить трудно. [c.166]

    В результате воздействия а-, р и у-излучения высокой энергии в металлических кристаллах возникают дефекты-вакансии и атомы в междоузлии (пары Френкеля), искажения кристаллических решеток и др. Как правило, в результате облучения меняются физические и химические свойства металлов. Механические свойства конструкционных металлов, как правило, меняются так Ств — предел прочности увеличивается (30—60%), б — относительное удлинение падает ( 50%) и нарастает микротвердость (30—50%), т. е. металл упрочняется, но охрупчивается. Электрическое сопротивление металлов после облучения возрастает. Изменение химических свойств можно оценить сдвигом в положительную сторону электродных потенциалов после облучения  [c.531]


    Радиационно-химические реакции (радиолиз) протекают, в отличие от фотохимических, под действием излучений высокой энергии. Обычно—это поток электронов, нейтронов, протонов, а-частиц и т. п., а также рентгеновские и у-лучи, приводящие к более сильному возбуждению молекул, чем это было при фотохимических реакциях. В остальном (механизм процесса, общие закономерности и т. п.) радиационно-химические реакции подобны фотохимическим. [c.188]

    Когда на кристаллы галогенидов щелочных металлов воздействуют излучением высоких энергий, кроме / -центров могут образоваться также электронно-дефицитные У-центры (дырки). [c.76]

    Исследование фотохимических процессов служит также пониманию радиолиза органических соединений, происходящего под влиянием излучений высоких энергий, и выработке мер, направленных против лучевого поражения. [c.287]

    Воздействие излучений на живые организмы зависит от энергии излучения. Ионизирующее излучение имеет очень высокую энергию и представляет наибольшую опасность. Оно может быть электромагнитным излучением высокой энергии (например, рентгеновские лучи, гамма-радиация) или потоком частиц высокой энергии, испускаемых при радиоактивном распаде. Энергия такого излучения передается электронам, связываюи1им атомы в молекулах, из-за чего электроны выбиваются из молекул, создавая высокоактивные осколки молекул, часто в виде ионов (откуда и происходит название ионизирующая радиация ). Такие разрушения могут быть очень опасны для живых организмов. Все ядерные излучения являются ионизирующими. [c.304]

    При радиационно-химическом инициировании радикальной полимеризации используются излучения высокой энергии (v-лучи, быстрые электроны, а-частицы, нейтроны и др.). Энергия активации фотохимического и радиационно-химического инициирования близка к нулю. Особенностью двух последних способов инициирования является возможность мгновенного включения и выключения облучающего излучения, что важно при некоторых исследовательских работах. / [c.9]

    Вулканизация может протекать также под действием свободнорадикальных инициаторов (например, пероксидов) или под действием излучений высокой энергии (например, 7-излучения). Механизм реакции заключается в отрыве подвижного атома, например атома водорода, от макромолекулы с образованием свободного радикала. Рекомбинация макрорадикалов в конечном счете приводит к образованию разветвленных и сшитых полимеров. [c.61]

    К межмолекулярным реакциям относится также отверждение жидких реакционноспособных олигомеров. Б результате они необратимо превращаются в твердые нерастворимые и неплавкие трехмерные полимеры. Отверждение происходит в результате взаимодействия реакционноспособных групп олигомеров между собой или со специальными добавками отвердителями) под действием катализаторов, тепла, УФ-света, излучений высокой энергии. При- мером такой реакции может служить процесс отверждения эпоксидного полимера, имеющего строение [c.61]

    К реакциям, ухудшающим свойства полимеров, относятся прежде всего реакции, связанные с распадом молекулярных цепей, приводящие к образованию продуктов со значительно пониженной молекулярной массой или ннзкомолекулярных веществ. Эти реакции деструкции протекают в полимерах под воздействием теплоты, света, излучения высоких энергий, кислорода, озона, механических напряжений и др. [c.238]

    На стадии зарождения цепи окисления свободные радикалы могут образоваться также при действии света, излучений высоких энергий, механических напряжений, и тогда процесс облегчается. [c.259]

    Передача энергии может быть осуществлена также с помощью облучения реагентов. Реакции, происходящие под действием света, называются фотохимическими, а раздел химии, изучающий эти реакции — фотохимией. Реакции, протекающие под действием излучений высоких энергий (7-излу-чение, рентгеновское излучение, потоки электронов, протонов, нейтронов, а-частиц и т.д.), называются радиационно-химическими изучением их занимается радиационная химия. [c.153]

    К излучениям высоких энергий относятся прежде всего рентгеновские лучи и у-лучи. Радиационно-химические реакции вызывают также нейтроны, элект-  [c.101]

    Заболевание, вызванное недостатком витамина О. Развивается в отсутствие солнечного света Реттеновские лучи Электромагнитное излучение высокой энергии. Поглощается тяжелыми металлами и костями, но легко проникает через менее плотные ткани Рецептор [c.547]

    Радиационно-химические реакторы. В радиа-циоино-химическнх реакторах активация молекул обеспечивается поглощением ими ионизирующего излучения высокой энергии, главным образом -излучения или потока электронов- [c.101]

    Радиационная химия изучает химические реакции, протекающие в веществе при воздействии на него излучений высоких энергий, т. е. при прохождении через него пучков ионизирующих частиц. Радиационно-химические реакции называют радиолизом. К ионизиру-юнщм излучениям относятся рентгеновские и -лучи, а также пучки электронов, протонов, нейтронов, а-частиц и др. [c.363]

    Озон можно получать, пропуская электрический ток через сухой О2. Прибор для проведения этого процесса схематически изображен на рис. 21.12. Острый запах озона иногда ощущается вблизи электрических приборов, в которых проскакивают искры, а также в атмосферном воздухе после грозы с частыми молниями. Озон еще более сильный окислитель, чем О2. Однако его можно долго хранить лишь при низких температурах, поэтому он обычно используется сразу же после получения. Как мы узнали из гл. 10, ч. 1, озон является валсным компонентом верхних слоев атмосферы, поскольку он не пропускает ультрафиолетовое излучение Солнца. Вследствие этого озон защищает все живое на поверхности Земли от действия этого излучения высокой энергии. Однако озон, будучи очень сильным окислителем, способен вызывать большие разрушения в нижних слоях атмосферы. Поскольку он оказывает разрушительное действие на растения, животных и строительные материалы, озон считается загрязнителем воздуха. [c.302]

    Это химические реакции, протекающие под действием излучения высокой энергии (рентгеновское и 7-излучение, поток электронов, протонов и т.п.). Такие излучения имеют значительно большую энергию, чем энергия световых квантов, и поэтому их действие сильно отличается от действия света. Например, для возбуждения фотохимической реакции требуется свет определенной частоты. Лучи света, вызывающие одну фотохимическук) реакцию, могут быть совершенно неактивными для другой реакции. Излучения же высокой энергии не обладают такой специфичностью. [c.316]

    ЗАЩИТА от ИЗЛУЧЕНИЙ РАДИОАКТИВНЫХ ВЕЩЕСТВ и других излучений высоких Энергий (у-, Р-, а-лу-чей, нейтронов и др.) — снижение уровня активности излучения до неопасной для здоровья человека. Исходя из того, что биологическое действие этих излучений особенно опасно, разработаны предельно допустимые нормы доз облучения, не приносящие ощутимого вреда здоровью человека, даже при длительной работе с излучениями. Суммарная, предельно допустимая доза за все время работь человека (в возрасте N лет) с изучениями по действующим нормам не должна превышать величины 5 (Л — 18) биологических эквивалентов рентгена бэр = где бэр — биологические эквиваленты рентгена фэр — допустимая доза за неделю обэ — относительная биологическая эффективность. Защита зависит от вида излучений и их физических свойств. Нелетучие радиоактивные вещества, испускающие а-час-тицы, не представляют опасности, т. к, слой воздуха в 15 см предохраняет от их вредного воздействия. Используя [c.99]

    Химические процессы, происходящие под действием ионизирующих излучений высокой энергии (рентгеновы лучи, ал фа-ча-стицы, гамма-лучи и т. д.). Излучения большой энергии вызывают в веществе глубокие изменения и инициируют различные реакции. Так, например, при действии ионизирующих излучений на кислород образуется озон, алмаз превращается в графит, а оксиды марганца выделяют кислород. [c.150]

    Полимеризация в твердой фазе протекает при температурах ниже температуры плавлершя мономера. Этот метод не нашел широкого распространения, так как затруднено инициирование полимеризации (низкие температуры, трудности равномерного распределения инициаторов, аппаратурное оформление и др.). Наиболее удобными являются способы инициирования твердофазной полимеризации светом, излучениями высоких энергий, причем могут реализоваться свободнорадикальный, ионный или смешанный (ионно-радикальный) механизмы полимеризации. [c.81]

    Ко второй группе реакций деструкции относятся цепные реакции деструкции, т. е. такие, при которых па один акт разрыва полимерной молекулы под действием какого-либо деструктирую-щего фактора приходится несколько актов распада цепей в других местах цепи. Как и цепная полимеризация, цепная деструкция может протекать по радикальному или ионному механизму. Инициирование цепной деструкции происходит под влиянием факторов, вызывающих образование радикалов или иоиов в цепях полимера (т. е. аналогично цепной полимеризации) под действием теплоты, света, излучений высоких энергий, а также химических веществ, распадающихся на свободные радикалы (пероксиды) или ионы. Цепная деполимеризация как частный случай цепной деструкции рассмотрена выше на примере деполимеризации полиметилметакрилата, содержащего двойные связи на концах макромолб1сул. Цепная деструкция протекает также при действии кислорода на полимеры (окислительная деструкция). [c.241]

    Поэтому при поглощении молекулой ультрафиолетового излучения высокой энергии наблюдаемый спектр поглощения состоит из широких полос, являющихся результатом наложения большого числа узких полос, соответствующих различным переходам между близко расположенными подуровнями. Сложная природа электронных спек-ров многоатомных молекул делает очень трудным их полный анализ даже при использованип приборов высокого разрешения, т. е. высоко монохроматичных потоков излучений. Отсутствие вращательной и вращательно-колебательной структур можно наблюдать в спектрах жидких веществ и растворов, что связано с взаимодействием между соседними молекулами растворенного вещества и влиянием сольватации (большинство химических исследований относится именно к этим условиям). Полярные растворители обусловливают обычно значительно большие изменения в полосах поглощения, чем неполярные. Это объясняется тем, что оптические спектры возникают в результате поглощения или излучения света внешними электронами, наименее прочно связанными с ядром, которые требуют для возбуждения меньше энергии, чем внутренние электроны. [c.8]

    Стереорегулярные полимеры всегда получаются при канальной полимеризации мономеров в твердой фазе. Мочевина (карбамид) и тио-мочевина легко образуют кристаллические комплексы (иначе называемые соединениями включений) с веществами, молекулы которых имеют соответствующие размеры и форму. Мочевина и тиомочевина в присутствии подобных соединений кристаллизуются таким образом, что в их кристаллической решетке образуются длинные каналы. Стенки этих каналов построены из свернутых в спираль молекул мочевины, связанных водородными связями. Вдоль этих каналов расположены молекулы веш,ества, с которым мочевина или тиомочевина образует комплекс. Такие комплексы образуют многие мономеры винильного и дивиниль-ного рядов. Так как расположение молекул мономера в кристалле мо-чевины или тиомочевины упорядочено, а движение относительно ограничено, при действии излучений высокой энергии протекает стереоспецифическая полимеризация. Таким методом были получены транс-1,4  [c.126]

    Из радиоактивных изотопов щелочных металлов получили применение i Na(7 о,5= 14,3 ч) как индикатор износа трущихся поверхностей и Is s (Го,5 = 3 года) в дефектоскопии металлов как источник 7-излучения высокой энергии. [c.296]

    Целью проводимых по данной теме исследований является изучение механизмов физико-химических процессов, происходящих в допирован-ных мономерных и полимерных матрицах под действием излучений высоких энергий (у- и УФ-излучений) и тепла, и развитие на этой основе подходов к созданию новых, перспективных полимерных материалов. [c.55]

    Формованные изделия из фенольных смол обладают значительными иреимуществами по сравнению с другими техническими пластмассами, особенно в тех областях ирименения, в которых действуют высокотемпературные нагрузки. Данные о стойкости таких материалов к действию излучений высоких энергий приведены в разд. 7.3. В литературе [43—47] приводятся сведения о свойствах указанных материалов и их прочности под воздействием различных факторов. В табл. 10,2 приведены минимальные требования стандарта DIN 7708, предъявляемые к свойствам фенопластов при испытаниях на стандартных образцах реальные цифры в большей или меньшей степени всегда превышают этн предельные показа- [c.162]


Смотреть страницы где упоминается термин Излучения высокой энергии: [c.33]    [c.34]    [c.295]    [c.15]    [c.55]    [c.108]   
Действующие ионизирующих излучений на природные и синтетические полимеры (1959) -- [ c.0 ]

Сополимеризация (1971) -- [ c.456 ]

Прочность полимеров (1964) -- [ c.154 , c.157 , c.158 ]

Свободные радикалы в растворе (1960) -- [ c.0 ]

Прочность полимеров (1964) -- [ c.154 , c.157 , c.158 ]




ПОИСК





Смотрите так же термины и статьи:

Энергия излучения



© 2025 chem21.info Реклама на сайте