Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Кристаллы-анализаторы

    Принципиальная схема рентгеновского спектрометра. Первичное излучение рентгеновской трубки вызывает флуоресценцию элементов, входящих в состав пробы. Излучение флуоресценции проходит вдоль набора продольных плоскопараллельных пластин, падает на кристалл-анализатор и, отражаясь от него, разлагается в спектр. Отражающееся в различных направлениях излучение определенных длин волн регистрируется счетчиком, совмещенным с гониометром. Такая схема прибора основана на принципе рентгеновской дифрактометрии. Этот метод отличается от рентгеновской спектроскопии только тем, что в нем задаются длиной волны регистрируемого излучения, а строение кристалл-анализатора остается неизвестным. В рентгеновской же спектроскопии имеет место обратное. [c.204]


    Спектрометр. В спектрометре с горизонтально расположенным кристалл-анализатором счетчик можно вращать вокруг общей оси. Условие отражения выполняется только тогда, когда перпендикуляр к пробе или соответственно перпендикуляр к поверхности кристалл-анализатора делит угол между падающим и отраженным лучами пополам (рис. 5.9). Если угловая скорость вращения счетчика в два раза больше скорости вращения кристалл-анализатора, то это требование выполняется при любом положении кристалла. [c.205]

    НЕКОТОРЫЕ КРИСТАЛЛ-АНАЛИЗАТОРЫ, ИСПОЛЬЗУЕМЫЕ В РЕНТГЕНОФЛУОРЕСЦЕНТНЫХ СПЕКТРОМЕТРАХ [c.206]

    Принципиальная схема установки для рентгенофлуоресцентного анализа показана на рис. 33.3. Первичное излучение рентгеновской трубки / попадает на пробу 2, в которой возбуждается характеристическое вторичное рентгеновское излучение атомов элементов, входящих в состав пробы. Отражающиеся от поверхности пробы рентгеновские лучи самых разнообразных длин волн проходят через коллиматор 3 —систему из параллельных молибденовых пластин, предназначенную для пропускания параллельных идущих только в одном направлении лучей. Расходящиеся лучи других направлений поглощаются внутренней поверхностью трубок. Идущие от пробы лучи разлагаются в спектр, т. е. распределяются по длинам волн посредством кристалла-анализатора 4. Угол отражения лучей 0 от кристалла равен углу падения однако [c.783]

    Таблица 33.2. Кристаллы-анализаторы [c.784]

    Отраженные от кристалла-анализатора монохроматические лучи проходят через коллиматор и фиксируются приемником 6, который вращается синхронно с кристаллом-анализатором с вдвое большей скоростью. В качестве приемников используют счетчик Гейгера, пропорциональный или сцинтилляционный счетчики Последний состоит из кристаллофосфора — [c.784]

    Рентгеновские спектры поглощения связаны с переходом электрона внутр. оболочки на возбужденные оболочки (или зоны). Для получения этих спектров тонкий слой поглощающего в-ва помещают между рентгеновской трубкой и кристаллом-анализатором (рис., 2) или между кристал- [c.240]

    Закон Брэгга можно легко получить с помощью схемы, представленной на рис. 5.2. Пусть когерентный пучок рентгеновских лучей зеркально отражается от параллельных кристаллических плоскостей, расположенных на расстоянии друг от друга. Из двух лучей, ход которых показан на рис. 5.2, нижний на пути выхода из образца проходит дополнительное расстояние AB =2d sin в. Если это расстояние равно целому числу длин волн пк, то отраженные лучи будут совпадать, по фазе и пропорциональный счетчик зарегистрирует максимум интенсивности. Если используется. высококачественный кристалл-анализатор, дифрагированный пучок получается довольно узким. Например, измеренная полуширина линии составляет при близительно 10 эВ при собственной полуширине 2 эВ. Рентгеновское излучение, длины волн которого не удовлетворяют закону Брэгга, поглощается в кристалле илп проходит сквозь него в его держатель. [c.191]


    Кристалл-анализатор 2 — пропорциональный счетчик 3 — круг фокусировки 4 — полупроводниковый детектор рентгеновского излучения. [c.192]

    Рис. 5.3 иллюстрирует также дополнительное геометрическое требование постоянства угла выхода рентгеновского излучения i(j, которое вызвано малыми размерами входного окна спектрометра для рентгеновского сигнала, выходящего из электронно-оптической камеры. Требование полной фокусировки обеспечивается. перемещением кристалла-анализатора по прямой линии от образца с одновременным поворотом кристалла и перемещением детектора по довольно сложной траектории, в результате чего круг фокусировки поворачивается вокруг точечного источника. Интересная особенность такого устройства заключается в том, что расстояние L от кристалла до источника прямо пропорционально длине волны. Это можно показать с помощью рис. 5.3. Запишем [c.193]

    Таблица 5.1. Кристаллы-анализаторы [c.196]

    Рентгенофлуоресцентный метод применен для определения и Аз в сурьмяно-свинцовых сплавах [1063]. С использованием спектрометра ХК0-6, трубки с вольфрамовым анодом, кристалла-анализатора ЫГ и амплитудного анализатора импульсов метод позволяет определять 0,15—0,75% 8п и 0,05—0,60% Аз. При содержании 0,260% 8п и 0,175 % Аз стандартное отклонение составляет соответственно 0,012 и 0,008%. [c.173]

    Типичная блок-схема кристалл-дифракционного рентгеновского спектрометра показана на рис. 14.83. Анализируемый образец располагается непосредственно перед выходным окном рентгеновской трубки. Рентгеновская трубка, облучая образец, возбуждает в его поверхностном слое характеристическое рентгеновское излучение атомов элементов. Излучение от образца через первичный коллиматор попадает на кристалл-анализатор с постоянной решетки с1 под углом 0, обеспечивающим выполнение условия дифракционного отражения [c.11]

    Основные характеристики кристаллов-анализаторов, используемых в современных рентгеновских спектрометрах, приведены в приложении. [c.14]

    Характеристическое флуоресцентное излучение, даваемое пробой, коллимируется, и параллельный пучок лучей после прохождения через абсорбер (ослабитель) падает на плоский кристалл анализатора. Возможно использование нескольких сменных коллиматоров и ослабителей, а также кристаллов, служащих для спектрального разложения рентгеновского излучения. В ассортимент кристаллов-анализаторов входят LiF, Ge, Si, кварц, графит и ряд других. Диспергирование излучения кристаллической решеткой с заданной постоянной происходит вследствие селективного отражения под углом, зависящим от длины волны. [c.151]

    Из уравнения Брэгга следует, что при данной длине волны X угол отражения 20 тем больше, чем меньше межплоскостное расстояние кристалла Поэтому кристалл-анализатор с малым с1 дает сильную дисперсию спектра. Наибольшая длина волны, которой можно достигнуть с данным кристаллом, составляет X 2 (1. По этой причине кристаллы с малыми межплоскостными засстояниями неприменимы для анализа в области больших длин волн. Лримеры некоторых применяемых кристалл-анализаторов приведены в табл. 5.7. [c.205]

    В работе [44] описана система КЕУЕХ 0810КШ, состоящая из рентгеновской установки (60 кВ 3 кВт), спектрометра с 51 (Ы)-полупроводниковым детектором и компьютера. По интенсивности характеристического излучения А1, 51, Са, К, Т1, Сг, Мп, Ре, N1, Сп, 2п, РЬ определяют концентрации этих элементов в пробе. Зольность рассчитывают как сумму содержаний золообразующих элементов в пробе. По1уешность анализа, выполняемого в вакууме, при А =5- 14 % составляет 0,96%. Исследователи [45] для контроля зольности использовали спектрометр АРЬ-72 ООО (Франция), включающий в себя рентгеновскую установку (2,7 кВт 50 кВ), детектирующую систему со сцинтилляционным счетчиком, кристалл-анализатором из фторида лития, вакуумную установку и компьютер. Зольность определяли по сумме содержаний в угле 5, Са, А1, 81, Ре, К. Погрешность анализа 0,48 % при у4 =5- -25 %. [c.37]

    Для разл. диапазонов X используют кристаллы-анализаторы с разными к (напр., 1лР, кварц, фтапат таллия). Увеличение К - радиуса окр)Жности Роуланда, проведенной через три точки в образце, кристалле-анализаторе и детекторе, повышает спектральное разрешение 6Е, но при этом уменьшает интенсивность 1. Величина АБ достигает обычно 10 эВ. В качестве детектора чаще всего используют проточные пропорциональные счетчики. [c.444]

    Измерение интенсивности линий А1 — Ка проводится на рентгеновском флуоресцентном спектрометре (ХКО — 3, ХКО — 5, фирмы Филипс) с хромовой и вольфрамовой трубками. Трубка с хромовым анодом лучше, так как в этом случае интенсивность флуоресцентного излучения у алюминия в 4 раза выше, чем с трубкой с вольфрамовым анодом [Б4А, 620, 11781. На трубки подают напряжение 40—50 кв, ток 20—50 ма. В качестве кристаллов анализаторов для разложения лучей в спектр используются пентаэритрит и этилен-диаминдитартрат. Детектор для измерения интенсивности спектральных линий представляет собой газопроточный пропорциональный счетчик с амплитудным анализатором (смесь 90% аргона и 10% метана). Рекомендуются особо тонкие пленки для окон пропорцио нальных счетчиков. [c.166]


    До 1968 г., когда в микроанализаторах впервые были применены полупроводниковые детекторы, рентгеносиектральиые измерения проводились лишь с помощью спектрометра с дисперсией по длинам волн, основные элементы которого приведены иа рис. 5.1. Небольшая часть реитгеиовского излучения, генерируемого образцом, выходит из электронно-оптической камеры, падает на поверхность кристалла-анализатора, дифрагирует в соответствии с законом Брэгга [c.190]

    В приборах со сфокусированным пучком злектронов сигнал рентгеновского излучения довольно слабый, и можно полагать, что он исходит из точечного источника. Поэтому рентгеновские спектрометры с полной фокусировкой, работающие с изогнутым кристаллом, более широко используются по сравнению с спектрометрами, имеющими плоский кристалл. Спектрометры последнего типа обычно используются в рентгеновском эмиссионном анализе при возбуждении с помощью рентгеновской трубки. В спектрометре с полной фокусировкой типа Иоганссона, схема которого приведена на рис. 5.3, точечный источник рентгеновского излучения, образец, кристалл-анализатор и детектор перемещаются по одному и тому же кругу радиуса R, называемому кругом фокусировки. Более того, кристалл изгибается так, чтобы кристаллические плоскости имели радиус кривизны 2R, а сама поверхность кристалла шлифуется до кривизны радиуса R. При такой геометрии все рентгеновские лучи, выходящие из точечного источника, будут падать на поверхность кристалла под одним и тем же углом 0 и фокусироваться в одной и той же точке на детектО ре. Этим обеспечивается максимальная эффективность сбора рентгеновского излучения в спектрометре без потери высокого разрешения по длинам волн. Очевидно, что в случае плоского кристалла угол падения рентгеновских лучей будет изменяться по длине кристалла, что. приводит к уширению и возможному наложению пико1В, вследствие чего уменьшаются максимальная интенсивность пика и отношение сигнал/фон. Хотя применение щелей Соллера дает возможность получить более параллельный пучок лучей, падающих на кристалл, однако и в этом случае не удается избежать потери интенсивности сигнала. [c.193]

    СКОЛЬКИМИ кристалл-дифракцнонными спектрометрами. Наличие нескольких спектрометров, каждый из которых имеет несколько кристаллов, необходимо не только для лроведения анализа одновременно по нескольким элементам, но также позволяет оптимизировать условия анализа в различных диапазонах длин волн, испэ-... уя имеющийся набор кристаллов. В табл. 5.1 приведены параметры наиболее распространенных кристаллов-анализаторов сравнительное разрешение, отражательная способность и величина межплоскостного расстояния. Так как sin0 не может быть больше единицы, то, согласно закону Брэгга, верхний предел максимальной длины волны, дифрагировавшей на любом данном кристалле, составляет 2d. Практические пределы зависят от конструкции спектрометра, поскольку из рис. 5.3 очевидно, что при sin 0=1, т. е. при 0 = 90°, детектор должен был бы находиться в точке источника рентгеновского излучения внутри электронно-оптической колонны. Нижний предел анализируемой длины волны следует из уравнения (5.2), поскольку становится физически невозможным придвигать кристалл-анализатор слишком близко к образцу. [c.196]

    Спектрометры с волновой дисперсией состоят из диспергирующего кристалла, который отражает определенную длину волны спектра в соответствии с условием Брэгга. Интенсивность этого излучения далее измеряется при помощи газового ионизационного или сцинтилляциониого детектора. Спектрометры с волновой дисперсией характеризуются гораздо лучшим разрешением ( 5 эВ) и лучшим соотношением сигнал/шум, чем спектрометры с энергетической дисперсией. Однако они позволяют записывать спектр лишь последовательно. Кроме того, для работы во всем спектральном диапазоне требуется несколько кристаллов-анализаторов. На практике аналитические приборы комплектуют одним энергодисперсионным спектрометром и несколькими (от одного до пяти) кристаллическими спектрометрами. [c.334]

    Дифракционное исследование порошков проводят при помощи монохроматического излучения, получаемого при помощи обычной вакуумированной рентгеновской трубки (например, с излучением СиКа) с присоединенным кристаллом-анализатором (например, из графита). Большое число кристаллитов в облучаемом образце гарантирует то, что они будут присутствовать во всех возможных ориентациях, и, таким образом, в принципе возможно зарегистрировать брэгговские отражения hkl для всех возможных межплоскостных расстояний решетки dhki, соответствующих величинам 2в (ур, 11,2-1) в угловом диапазоне прибора. Дифрагировавшее рентгеновское излучение располагается в серии конусов, коаксиальных с направлением падающего пучка. Для разовых и постоянных исследований структурных и физических свойств соединений широко используются управляемые компьютерами автоматические дифрактометры. Однако до сих пор как в количественных, так и в качественных исследованиях порошковых образцов используют относительно недорогие [c.401]

    Твердый образец подвергают облучению либо электронами, ускоренными в вакууме при разности потенциалов 5-40 кВ, либо первичным рентгеновским излучением высокой энергии и интенсивности. Испускаемое образцом вторичное характеристическое излучение рентгеновской частоты проходит через щель коллиматора на кристалл-анализатор, исполняющий роль диффракционной решетки для определения длины волны излучения, и попадает на регистратор для определения интенсивности отдельных линий и непрерывной записи рентгеновского спектра. Так работают приборы электронно-спектрального химического анализа (ЭСХА), рентгено-спектрального химического анализа (РСХА), электронно-зондовые рентгеновские микроанализаторы и др. В последнее время их объединяют с оптическими и электронными микроскопами для целенаправленного выбора объекта исследования в неоднородных средах. [c.109]

    Очень быстрым методом является рентгенофлуоресцентный метод, предложенный для определения мышьяка (0,05—0,60%) в в свинцовосурьмянистых сплавах, позволяюш ий одновременно определять также содержание в них сурьмы (2—7%) и олова (0,15— 0,75%) 1659]. Метод не требует разложения образца. Используют спектрометр XRD-6, трубку с вольфрамовым анодом, кристалл-анализатор LiF и амплитудный анализатор импульсов. [c.171]

    Один из наиболее удобных методов рентгеновского флуоресцентного определения кадмия — метод внешнего стандарта с введением поправок на массовые коэффициенты поглощения. Теория метода изложена в работах [43, 44, 230, 231, 326, 328], его применение для определения кадмия — в [436, 662, 776]. Экспериментально показано, что предел обнаружения кадмия в растворах по линии Каг в оптимальных условиях насыщенного излучающего слоя составляет 5,4 мг/л [776]. Для этого применяли плоский кристалл-анализатор LiF толщиной 0,02 дюйма (0,508 мм), коллиматор Соллера и сцинтилляционпый счетчик подаваемое на трубку напряжение 57 кв. При использовании аналитической линии Lat предел обнаружения 10 мг d/л в этом случае для регистрации применяли пропорциональный счетчик с гелиевым наполнителем [776]. Предел обнаружения кадмия в порошковых пробах [c.135]

    Рентгеноспектральное определение магния выполняется главным образом по вторичным рентгеновским спектрам (флуоресцентный метод). Для рентгеновского флуоресцентного определения используется ЙС-излучение магния. Интенсивность линии магния Ка измеряют на флуоресцентных спектрометрах. На трубку с вольфрамовым антикатодом подают напряжение 40—50 кв, сила тока 20—40 ма. В качестве кристаллов анализаторов для разложения лучей в спектр используются кристаллы фосфата аммония. Детектор для измерения интенсивности спектральных линий представляет собой газопроточный пропорциональный счетчик с амплитудным анализатором. [c.194]

    Определение фосфора в окисных фосфор-кремниевых пленках на кремниевых подложках [1010] ведут рентгенофлуоресцентным методом. Для анализа используют полированные образцы в виде таблеток диаметром 25 мм и толщиной 0,18—20. им. Окисный слой на субстрате толщиной 700 нм получаю при температуре 1250° С в атмосфере влажного кислорода. Фосфор определяют на вакуумном спектрометре (трубка с хромовым анодом). Кристалл-анализатор — ЕДДТ. Детектор — проточный пропорциональный счетчик с амплитудным анализатором. Давление в спектрометре 0,1 мм рт. ст. [c.121]

    Режим работы напряжение 5 кв, ток 35 ма, кристалл-анализатор из кварца, атмосфера гелия, для регистрации излучения служит проточный пропорциональный счетчик. Для ана.яиаа мeдJ, легированной теллуром, отбирают 10 г пробы в виде стружки и брикетируют ее под давлением 1 т1см . Брикет помещают в держатель образцов, который вращается со скоростью 25 об мин. Благодаря вращению образца уменьшается влияние поверхностных неоднородностей. Чувствительность определения фосфора данным методом составляет 0,005%. [c.154]

    Способы разложения рентгеновского излучения в спектр. В СРС наиболее часто применяется монохроматор Брегга-Соллера, состоящий из коллиматора, плоского кристалла-анализатора, вращающегося вокруг [c.13]

    К кристаллу-анализатору предъявляются два основных требования он должен обладать высокой светосилой и хорошей разрешающей способностью. Указанные качества в значительной мере зависят от того, в какой области длин волн используется кристалл. Для длинноволновой области (1С<,-линии элементов от хлора до кислорода) используют кристаллы с большим межплоско-стным расстоянием d, а для коротковолновой области — с малым /(0,1-0,15 нм). Разрешающая способность тем выше, чем меньше d. [c.14]


Смотреть страницы где упоминается термин Кристаллы-анализаторы: [c.205]    [c.207]    [c.214]    [c.323]    [c.506]    [c.240]    [c.240]    [c.444]    [c.191]    [c.258]    [c.116]    [c.168]    [c.154]    [c.990]    [c.11]    [c.13]    [c.14]   
Применение поглощения и испускания рентгеновских лучей (1964) -- [ c.129 , c.132 , c.133 , c.137 ]




ПОИСК





Смотрите так же термины и статьи:

Анализаторы



© 2025 chem21.info Реклама на сайте