Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Рентгеновские эффект

    Ионизирующее излучение (гамма- и рентгеновские лучи) обладает такой энергией, что способно выбить из молекулы электроны с образованием ионов. Инфракрасное излучение обладает низкой энергией и при взаимодействии с молекулами вызывает колебательные и вращательные эффекты. Электромагнитное излучение в близкой ультрафиолетовой и видимой областях спектра (240—700 нм) взаимодействует с электронами молекулы. Ниже 240 нм ультрафиолетовый участок спектра задерживается озоном иа уровне 20—30 км от Земли. При поглощении света с длиной волны менее 800 нм изменяется электронная, вращательная и колебательная энергия молекул, что приводит к возбужденному состоянию молекул. [c.26]


    Исследователей, занимающихся проблемой лиофильности дисперсных систем, всегда интересовало, адсорбция скольких молекулярных слоев воды сопровождается заметным тепловым эффектом и какой вклад в суммарную интегральную теплоту смачивания вносит тепло, выделяющееся при адсорбции первого и последующих слоев воды. Выбор в качестве объектов исследования слоистых силикатов с расширяющейся структурной ячейкой, для которых характерно ступенчатое заполнение межслоевых промежутков, комплексное применение для их исследования рентгеновского, адсорбционного и термохимического методов анализа позволяет ответить на эти вопросы. [c.32]

    Какие из описанных ниже экспериментов самым непосредственным образом подтверждают гипотезу де Бройля о волновых свойствах материи а) дифракция рентгеновских лучей б) фотоэлектрический эффект в) рассеяние альфа-частиц при прохождении через металлическую фольгу г) излучение абсолютно черного тела д) дифракция электронов  [c.380]

    Несомненно, теория Бора— Зоммерфельда явилась крупнейшим достижением физики. Наличие в атомах дискретных состояний было подтверждено экспериментально в опытах Д. Франка и Г. Герца (1913 г.). Серьезным успехом этой теории стало также вычисление постоянной Ридберга для водородоподобных систем и объяснение структуры их линейчатых спектров. В частности, Бору удалось правильно объяснить серии спектральных линий иона Не+, до того приписываемые водороду. Теория Бора — Зоммерфельда объяснила физическую природу характеристических рентгеновских спектров, расщепление спектральных линий в сильном магнитном поле (так называемый нормальный эффект Зеемана) и другие явления. [c.17]

    Поэтому радиоактивные изотопы с энергией а-частиц 4—5 МэВ целесообразно использовать для облучения пленок толщиной до 10— 15 мкм. Для увеличения деструкции материала в направлении вдоль трека целесообразно проводить облучение частицами в сочетании с дополнительным облучением ультрафиолетовым светом, рентгеновскими лучами, -лучами или электронами. При облучении ультрафиолетовым светом длина волны должна быть подобрана таким образом, чтобы наиболее сильно воздействовать на радиационно поврежденные места пленки. Например, для пленок из поликарбоната оптимальная длина волны составляет около 280—300 нм (2800—3000 А), большие длины волн практически не дают эффекта, а при меньших начинает происходить сильное разрушение всей поверхности пленки. [c.53]


    Близко к этому методу (рентгенографии) стоит метод дифракции электронов (электронография). Волновая механика показывает, что при действии пучка электронов на поверхность кристалла возникают те же дифракционные эффекты, что и при действии рентгеновских лучей. Определение структуры кристаллов и молекул методом дифракции электронов привело к результатам, полностью совпадающим с результатами, получаемыми с помощью рентгенографии, В последние годы с этой же целью стали применяться и нейтроны (нейтронография), что дало возможность определять положение и водородного атома, чего не удавалось достигнуть методами рентгенографии и электронографии. [c.123]

    В настоящей работе проведено комплексное изучение структуры, термодинамических и дилатометрических свойств димерной фазы С (DS), полученной сжатием фуллерита Сбо до давления 8 GPa при 290 К. Димерная природа образца, структура которого идентифицирована как (г.ц.к.) с параметром решетки а = 14.02 0.05 A, подтверждена методами рентгеновской дифракции. По данным дилатометрии оценено снижение скачка обьема в области вращательного фазового перехода в 30 раз по сравнению с амплитудой эффекта в фуллерите С ). Методами прецизионной адиабатической вакуумной калориметрии изучена теплоемкость DS в области 6 - 350 К с погрешностью, около 0.2%. В изученной области выявлен и охарактеризован ориентационный фазовый переход. Термодинамические характеристики перехода в DS и, для сравнения, в исходном Сбо [3] приведены в таблице. [c.139]

    Измерение ШРР ориентированных поликристаллических образцов позволяет не только определить степень ориентации главной цепи, но также и ориентацию двух других кристаллографических осей. Пусть монокристалл состоит из кристаллических ячеек с кристаллографическими осями а, Ь VI с (будем считать для простоты, что эти оси взаимно перпендикулярны, как в орторомбической решетке полиэтилена). Можно считать, что плоскости образованы вершинами кристаллической решетки, которые играют роль отражателей импульсного рентгеновского излучения. Результирующий эффект взаимного усиления отраженных импульсов от последовательных плоскостей, отстоящих друг от друга на расстоянии d, зависит в соответствии с законом Брегга от угла 0, под которым рентгеновское излучение попадает на отражающую кристаллографическую плоскость  [c.72]

    Некоторые из физических методов особенно широко исполь зуются в химических лабораториях, например спектроскопия ЯМР и ЭПР, спектрополяриметрия (ДОВ и КД), и поэтому они рассмотрены подробнее. В то же время с помощью менее распространенных методов, таких, как рентгеновская и фотоэлектронная спектроскопия (ФЭС), ядерный квадрупольный резонанс, мессбауэровская спектроскопия, эффект Фарадея и др., получают также чрезвычайно важную информацию, поэтому некоторые из этих методов стали быстро развиваться, например ФЭС, и применение их химиками постоянно расширяется. Вообще ценность любого метода проявляется только тогда, когда он применяется для решения конкретных химических задач, и особенно возрастает при совместном использовании с другими методами. [c.4]

    Размеры блоков мозаики по эффекту экстинкции находятся из зависимости, выведенной в динамической теории рассеяния рентгеновского излучения  [c.101]

    Для расчета дифракционных эффектов в стареющих сплавах обычно используют два теоретических подхода. В одном из этих подходов рассматривав т рассеяние рентгеновских лучей на отдельном нарушении, а затем рассчитывают интерференционную картину, обусловленную вторичными волнами, идущими от этих нарушений, и производят усреднение по всем конфигурациям распределений нарушений по кристаллу матрицы. В другом подходе кристалл снлава рассматривается как периодическая структура, состоящая из средних атомов, образующих кристаллическую решетку. В такой модели все возможные нарушения правильной периодичности описываются с помощью флуктуационной волны, искажающей правильную кристаллическую решетку среднего сплава. Такая флуктуационная волна может описывать либо изменение концентрации сплава, либо распределение статических смещений атомов, либо то и другое одновременно. В этом случае периодиче- [c.105]

    При экспериментальных рентгеновских исследованиях большой группы стареющих сплавов на рентгенограммах были обнаружены эф-X фекты диффузного рассеяния в виде сателлитов, сопровождавших главные максимумы дифракционного спектра матричного кристалла. Для объяснения этих дифракционных эффектов были предложены различные модели структуры твердого раствора па промежуточных стадиях распада, получивших название периодических и апериодических модулированных структур. [c.108]

    Чтобы выбить электрон с той или иной оболочки, энергия рентгеновского кванта должна быть, конечно, больше энергии связи электрона, причем вероятность этого процесса тем больше, чем ближе эти энергии по величине. Суммарный эффект поглощения излучения веществом может быть охарактеризован линейным коэффициентом поглощения ц.  [c.8]


    Рассеяние рентгеновских лучей электронами может быть когерентным (без изменения длины волны) и некогерентным. Во втором случае часть энергии рентгеновского кванта при упругом соударении передается электрону (эффект Комптона, который наблюдается в основном для жесткого рентгеновского излучения). Интерференция когерентно рассеянного излучения приводит к дифракционным эффектам. Поскольку длины волн рентгеновских лучей сравнимы с межплоскостными расстояниями в кристаллах, то кристаллы играют роль дифракционных решеток. Представим кристалл как комплекс параллельных плоскостей, на которых расположены атомы. Вследствие периодического строения расстоя- [c.12]

    При дифракции от поликристаллического образца дифракционные лучи образуют серии вложенных друг в друга конусов с общей вершиной в центре образца. Приведенное уравнение не учитывает эффекта преломления, но коэффициенты преломления для рентгеновских лучей близки к единице и отличаются от нее на 10 - Ю (в зависимости от среднего атомного номера материалов). Учет преломления при прецизионном определении параметров решетки будет рассмотрен в соответствующем разделе. [c.13]

    В последние годы постепенно расширяется область применения синхротронного излучения (СИ), испускаемого электронами, движущимися в синхротроне. Это излучение охватывает большой интервал длин волн, включая рентгеновскую область спектра. Для монохроматизации необходимо отражение от монокристалла. Перспективы использования СИ обусловлены высокой интенсивностью источников излучения, возможностью плавного изменения длины волны, что представляет интерес для структурного анализа, так как позволяет более эффективно использовать эффект аномального рассеяния (см. раздел 7.4). Другая область - применение длинноволнового рентгеновского излучения для структурного анализа биологических объектов с большими параметрами решетки. [c.15]

    И рост В замедляется и затем В начинает уменьшаться (соляризация). Этот эффект наблюдается либо в месте попадания первичного пучка рентгеновских лучей, либо в случае сильно переэкспонированных пленок. Зависимость I) от П показана на рис. 5, она различается для различных сортов пленки, но общий вид зависимости сохраняется. Зависимость от длины волны регистрируемого излучения определяется степенью поглощения и на ней выделяются края полос поглощения брома и серебра (рис. 6). При фотографической регист- [c.18]

    Все три перечисленных метода основаны на общем эффекте — дифракции волн, пропускаемых через вещество. Рентгеновские лучи рассеиваются электронами атомов, поток электронов рассеивается па ядрах. Однако экспериментальная процедура и возможности тпх трех методов существенно различаются, поэтому они будут рассмотрены отдельно. [c.201]

    В области очень низких давлений рабочая область ионизационны манометров лимитируется так называемым рентгеновским эффектом. Возвращаясь обратно к рис. Ю2, мы видим, что сетка триодной лампы непрерывно бомбардируется электронами с энергией около 150 э В и с интенсивностью, определяемой величиной эмиссионного тока. Эти электроны возбуждают рентгеновское излучение, которое, попадая на коллектор ионов, может вызывать фотоэлектронную эмиссию. Прибор, изме-ряющий коллекторный ток, не выделяет составляющие, обусловленные переносом заряда электронами, уходящими с коллектора, или попадающими на него положительньши ионами. Таким образом, в случае, когда вторичная электронная эмиссия становится уже сравнимой с током ионов, пропорциональность между давлением и ионным током нарушается. В триодных лампах величина вторичного эмиссионного тока эквивалентна ионному току, соответствующему давлению 10 мм рт. ст. Поэтому рассчитывать на разумную точность измерений для давлений нижа 10- мм рт. ст. уже нельзя. Развитие современных ионизационных манометров идет преимущественно по пути снижения рентгеновского ограничения посредством модификации структуры электродов. В этом отношении успешными оказались три подхода к решению задачи резкое уменьшение площади коллектора ионов, физическое разделение и экранирование коллекторных электродов для электронов и для ионов и, наконец, использование магнитных полей для увеличения пробега электронов, что позволяет уменьшить ток электронной эмиссии без снижения чустви тельности манометра, см. уравнение [27]. [c.325]

    Радиоволны, инфракрасный, видимый и ультрафиолетовый свет, рентгеновские лучи и гамма-излучение представляют собой электромагнитные волны с различной длиной волны. Скорость света, с = 2,9979-10 ° см с , связана с его длиной волны X и частотой V соотношением с = Ху. Волновое число у-это величина, обратная длине волны, V = 1/Х. Все нагретые тела излучают энергию (излучатель с идеальными свойствами дает излучение абсолютно черного тела). Планк выдвинул предположение, что энергия электромагнитного излучения квантована. Энергия кванта электромагнитного излучения пропорциональна его частоте, Е = км, где / -постоянная Планка, равная 6,6262 10 Дж с. Выбивание электронов с поверхности металла под действием света называется фотоэлектрическим эффектом. Квант света называется фотоном. Энергия фотона равна /IV, где V-частота электромагнитной волны. Зависимость поглошения света атомом или молекулой от длины волны, частоты или волнового числа представляет собой спектр поглощения. Соответствуюшая зависимость испускания света атомом или молекулой является спектром испускания. Спектр испускания атомарного водорода состоит из нескольких серий линий. Положения всех этих линий точно определяются одним общим соотношением-уравнением Ридберга [c.375]

    Уравнение (1.38) легко может быть получено теоретически. Как мы знаем, рентгеновский спектр обусловлен переходами электронов на внутренних оболочках атома. Для атомов и ионов с одним электроном терм выражается соотношением (1.6). Видоизменим это соотношение применительно к электрону на одной из внутренних оболочек атома. Электроны, находящиеся на большем расстоянии от ядра, чем рассматриваемый, оказывают малое влияние на энергию последнего, так как они значительно менее прочно связаны с ядром их воздействием на рассматриваемый электрон можно пренебречь. Те электроны, которые находятся между рассматриваемым электроном и ядром, уменьшают притяжение электрона к ядру. Этот эффект можно формально рассматривать как уменьшение действующего на электрон заряда ядра иа некоторую величину Ь, называемую постоянной экранирования. Тогда выражение для терма приобретает вид Т =/ [ (2 — Ь). Отсюда можно найти волновое число  [c.36]

    Для характеристики фотонного излучения но эффекту ионизации применяют так называемую экспозиционную дозу рентгеновского и гамма-излучений Дэкс- Она представляет собой отношение суммарного заряда всех ионов одного знака, созданных в воздухе, при полном торможеггии всех вторичных электронов, которые были образованы фотонами в малом объеме воздуха с массой (1т к массе воздуха в этом объеме [c.54]

    Единицей эквивалентной дозы в системе СИ является зи-верт (Зв). Зиверт — это эквивалентная доза любого вида излучения, которая создает такой же биологический эффект, как и поглощенная доза в один Гр образцового рентгеновского или гамма-излучения. В качестве образцового обыч1[о принимают рентгеновское излучение с энергией 200 кэВ. [c.54]

    Внесистемная единица эквивалентной дозы — бэр. Это эквивалентная доза любого вида излучения, которая создает такой же биологический эффект, как и поглощенная доза 1 рад образцового рентгеновского или гамма-излучения. Производные единицы миллибэр (мбэр), микробэр (мкбэр). [c.54]

    Анализ алканов показывает, что жидкие алканы дают кривые интенсивности рентгеновского рассеяния одного типа. Ре- )ультаты указывают на пре му1цественно параллельное расположение молекул, что вызывает стру1аурирование жидкост . Эффект усиливается с увеличением числа атомов углерода в цепочке. [c.60]

    Дифференциальные методы дают возможность исследовать непосредственно изменение деформации во времени в каждой точке системы при ее течении, т. е. установить поле деформаций и скоростей деформаций, а иногда и поле напряжений. К таким методам относятся микрокиносъемка процессов течения, рентгеновское просвечивание и др. Интегральные методы позволяют наблюдать суммарный эффект теч(5ния. К наиболее применяемым интегральным методам, при которых п])ояв-ляется неоднородность полей напряжений и деформаций, относится капиллярная вискозиметрия, метод внедрения конуса, метод пад(щия шарика. [c.188]

    На основе этих расшифровок природы усталости и своих рентгеновских исследований Сикка предполагает, что в процессе усталости разрываются более слабые вандерваальсовы связи и возможно некоторые основные связи. Это вызывает двойной эффект. Разрыхление структуры, с одной стороны, позволяет цепям ПС локально упорядочиться более совершенным образом и уменьшить вследствие этого средние межцепные и внутрицепные расстояния. С другой стороны, локальное упорядочение сопровождается увеличением свободного объема в областях образования трещин между доменами с более высоким упорядочением. [c.298]

    Мезофазные сферы в момент их возникновения и при последующем росте, по данным световой микроскопии в поляризованном свете, а также дифракционного и рентгеноструктурного анализов, являются оптически одноосными положительными кристаллами гегсагональной системы. Показанные на рис. 2-4, а изгибы слоев приводят к тому, что на краях они перпендикулярны к касательной поверхности сферы. Это, по-видимому, способствует начальной коалесценции. В условиях относительно низкой подвижности мезофазы и случайной взаимной ориентации коалесцирующих сфер образования простой слоистой структуры не происходит. При этом возникают структуры, отличающиеся множеством дефектов упаковки слоев линейных, изгибов, нарушений непрерывности. Исследования профилей рефлексов (002) рентгенограмм мезофазы с учетом эффектов гьбсорбции и поляризации рентгеновских лучей, а также фактора рассеяния атомов углерода показывают, что средние значения межслоевого расстояния 002 равны примерно 0,350 нм [2-89]. Отдельные пачки слоев с разными значениями межслоевого расстояния имеют размеры до 2 нм. При нагревании сферы мезофазы могут расщепляться и приобретать относительно плоскую конфигурацию. То же происходит и при графитации мезофазы. Флуктуация межслоевых расстояний у графитирующейся мезофазы наивысшая. [c.46]

    Рентгеновский анализ используют для определения фазового состава вещества перед термическим эффектом и после него. При этом вещество нагревают до температуры, отвечающей началу эффекта, и подвергают рептгенофазовому анализу, после чего нагревают до более высокой температуры, отвечающей концу фазового превращения, и вновь снимают рентгенограмму. [c.24]

    Положения главных максимумов дифракционного спектра / (Н) соответствуют узлам обратной решетки правильного кристалла, а функция. У (Н) является непрерывной функцией вектора обратного пространства Н. Любое искажение правильной структуры кристалла будет сопровождаться перераспределением части интенсивности главных максимумов дифракционного спектра в области обратного пространства между узлами обратной решетки. Это проявляется на рентгенограммах в виде диффузного фона между главными отран<ениями. Геометрия и интенсивность диффузного фона зависит от характера искажений правильной трех-мерно-периодической структуры кристалла, благодаря чему возможно экспериментальное изучение нарушений кристаллической структуры по эффектам диффузного рассеяния. Подробное изложение теории диффузного рассеяния рентгеновских лучей можно найти в работах [1—4]. [c.99]

    Применение эффекта Мёссбауэра для исследования фазового состава образцов фактически основано на том же принципе, что и рентгенографический фазовый анализ, с той лишь разницей, что в ядерном гамма-резонансе характеристическими величинами для идентификации линий спектра поглощения являются изомерный сдвиг линии поглощения б, квадрупольное расщепление линии АЕ и значение величины внутреннего эффективного поля на ядрах резонансного изотопа. В случае рентгеновских исследований каждому из веществ соответствует определенный набор дифракционных углов отражения (межплоскостные расстояния) и ин- [c.217]

    В экспериментах по исследованию эффекта Мёссбауэра в схеме на рассеяние, в особенности нри изучении дифракции мессбауэровских 7-квантов, удобно использовать так называемую фокусирующую схему в расположении источника, рассеивателя и детектора 7-квантов (рис. ХП.З). Такая геометрия съемки позволяет получать наибольшее угловое разрешение. Наиболее часто используется схема фокусировки по Бреггу — Брентано, для чего в конструкции мессбауэровских дифрактометров удобно использовать рентгеновские гониометры типа ГУР. [c.232]

    Широко используются в химии различные формы взаимодействия вещества с электромагнитным излучением рассеяние света при нефелометрии, определение показателя преломления, оптического вращения. Особенно часто для характеристики соединений используются спектры поглощения в различных областях электромагнитных колебаний. Поглощение в области видимого или ультрафиолетового спектра характеризует электронные свойства молекул. Р1нфракрасные спектры отражают колебания ядер. Наконец, дифракция рентгеновских лучей открывает возможность устанавливать геометрию молекул, чему служат также электронография и нейтронография. Дополнительную информацию о строении молекул может дать резонансная 7-спектроскопия (эффект Мессбауэра). [c.22]

    Волны де Бройля. В то время как фотоэффект и эффект Комптона совершенно определенно указывают на корпускулярную природу видимого и рентгеновского излучения, интерференция и дифракция стмь же определенно свидетельствуют о волновой природ . Отсюда следует вывод, что движение фотонов. характеризуется особыми законами, в которых сочетаются как корпускулярные, так и волновые характеристики. Единство таких, казалось бы, несовместимых черт выражается соотношением (1.28), связывающим массу фотона с длиной волны излучения. [c.24]

    Трех сверхструктурных векторов, дающих в сумме вектор субъячейки, выбрать нельзя и фазовый переход второго рода между этими структурами возможен (хотя и не обязателен). Экспериментально для фазовой диаграммы этой системы предложены два варианта отвечающий ограниченным (рис. 28, О ) и непрерывным твердым растворам (рис. 28, 6 ) с минимумом и распадом при более низких температурах2. В действительности температуры термических эффектов в обоих работах близки, а расхождения вызваны скорее разной интерпретацией рентгеновских данных, которая, вероятно, в обоих случаях неверна эти данные относятся к комнатной температуре и при недостаточно быстрой закалке характеризуют НИЗКО емпературное состояние. Интерпретация данных осложняется близостью параметров сосуществующих фаз (без учета сверхструктуры). Фактически во второй работе не было оонаружено ромбоэдрического искажения ни для одного образца, а те или иные индексы (из числа возможных) приписывались произвольно (табл. 37). Так, параметры гексагональных ячеек рассчитывались из линий с индексами 00015, 1123, 1126. Из них только в случае 1123 нет наложения линий. [c.166]


Смотреть страницы где упоминается термин Рентгеновские эффект: [c.320]    [c.46]    [c.14]    [c.587]    [c.252]    [c.157]    [c.60]    [c.215]    [c.76]    [c.95]    [c.2]    [c.82]    [c.146]    [c.101]   
Теория резонанса (1948) -- [ c.331 , c.336 , c.339 ]




ПОИСК







© 2025 chem21.info Реклама на сайте