Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Рубидий с германием

    Определите положение в периодической системе селена, рубидия, германия, теллура, стронция, мышьяка, аргона и укажите, какие из этих элементов металлы, какие — неметаллы. [c.39]

    Метод основан на способности репия каталитически ускорять реакцию восстановления теллурата натрня до элементного теллура хлоридом олова (И). Выделяющийся теллур в присутствии защитного коллоида (желатины) окрашивает раствор в черно-коричневый цвет. Определение 0,1—0,001 мкг рения возможно в присутствии более 100 мкг следующих ионов меди, ртути, германия, олова, свинца, сурьмы, висмута, мышьяка, рубидия и осмия. Мешающее влияние молибдена и вольфрама устраняют связыванием их винной кислотой. Метод может быть применен для определения рения в горных породах после выделения его в виде сульфида. [c.376]


    Пример 38. Составить структурные формулы высших оксидов рубидия, стронция, галлия, германия, сурьмы, селена, рения, осмия. [c.41]

    Материал в пособии изложен последовательно согласно расположению элементов в группах периодической системы Д. И. Менделеева. Большой объем материала вызвал необходимость расчленить книгу на три части, которые выходят в свет одновременно. В I части излагается химия и технология лития, рубидия и цезия, бериллия, галлия, индия и таллия, во П части — скандия, иттрия, лантана и лантаноидов, германия, титана, циркония и гафния, в П1 части — ванадия, ниобия, тантала, селена, теллура, молибдена, вольфрама, рения. [c.3]

    Отдельные тома серии Аналитическая химия элементов выходят самостоятельно но мере их подготовки. Вышли в свет монографии, посвященные торию, таллию, урану, рутению, молибдену, калию, бору, цирконию и гафнию, кобальту, бериллию, редкоземельным элементам и иттрию, никелю, технецию, прометию, астатину и францию, ниобию и танталу, протактинию, галлию, фтору, селену и теллуру, алюминию, нептунию, трансплутониевым элементам, платиновым металлам, радию, кремнию, германию, рению, марганцу, кадмию, ртути, кальцию, фосфору, литию, олову, серебру, цинку, золоту, рубидию и цезию, вольфраму, мышьяку, сере, плутонию, барию, азоту, стронцию, сурьме, хрому, брому, ванадию, актинию, хлору. [c.4]

    Отдельные тома серии Аналитическая химия элементов будут выходить самостоятельно, по мере их подготовки. Вышли в свет монографии, посвяш,енные торию, таллию, урану, рутению, молибдену, калию, бору, цирконию и гафнию, кобальту, плутонию, бериллию, прометию, технецию, астатину и францию, радию, ниобию и танталу, протактинию, кремнию, магнию, галлию, фтору, алюминию, селену и теллуру, никелю, РЗЭ и иттрию, нептунию, трансплутониевым элементам, платиновым металлам, золоту, германию, рению, фосфору, кадмию. Готовятся к печати монографии по аналитической химии кальция, лития, ртути, рубидия и цезия, серебра, серы, углерода, олова, цинка. [c.4]

    Германия), где ими было получено более 1 т рубидиевых квасцов. Однако из-за отсутствия спроса на соединения рубидия производство квасцов вскоре было прекращено. [c.297]

    Редкие металлы, в свою очередь, составляют пять подгрупп легкие редкие (литий, бериллий, рубидий, цезий) рассеянные (галлий, индий, таллий, германий, рений) тугоплавкие (цирконий, гафний, ниобий, тантал) редкоземельные (лантан и лантаноиды)  [c.121]

    КЬ Рубидий 1861 Р. Бунзен, Г. Кирхгоф (Германия) [c.410]

    В первой книге описываются макро-, микро-, полумикрометоды, а также хроматографические, люминесцентный и некоторые другие методы анализа. Наряду с описанием реакций катионов и анионов, которые обычно рассматриваются в учебниках по качественному анализу, приводится описание реакций и методов разделения наиболее важных редких и рассеянных элементов (лития, рубидия, цезия, бериллия, титана, циркония, тория, урана, германия, ванадия, вольфрама, молибдена и др.), которые изучаются студентами только некоторых специальностей. Однако материал учебника расположен таким образом, что при необходимости описание упомянутых элементов может быть выпущено без особого ущерба для изложения основного курса. [c.11]


    В настоящее время редкие металлы получили применение в самых разнообразных областях науки и техники, причем области применения их из года в год расширяются. Это прежде всего объясняется особыми физическими и химическими свойствами редких металлов, так, например, германий является ценнейшим материалом дЛ1 изготовления полупроводниковых приборов, широко применяемых в различных областях радиотехники и электронике. Для этих же целей применяются индий, теллур, селен и другие. Введение редких металлов в стали и в сплавы цветных металлов обеспечило получение материалов, стойких против коррозии, жаропрочных, обладающих большой механической прочностью и другими ценными свойствами. В химической технологии и металлургии принято разделять редкие металлы на следующие технические подгруппы а) легкие литий, рубидий, цезий, бериллий и др б) тугоплавкие титан, цирконий, гафний, ванадий, ниобий, тантал, молибден, вольфрам, рений в) рассеянные галлий, индий, таллий, германий г) редкоземельные скандий, иттрий, лантан и лантаноиды радиоактивные полоний, радий, актиний и актиноиды. [c.419]

    Литий, рубидий, цезий, бериллий Бериллий, титан, цирконий, гафний, торий, тантал, уран Германий, молибден, вольфрам, рений [c.420]

    Олово, рубидий, вольфрам, литий, бор, иттрий, кобальт, свинец, бром, молибден, торий, цезий Скандий, мышьяк, кадмий, бериллий, аргон, гафний, уран, галлий, германий, иод [c.321]

    Видно, что определению натрия, калия, рубидия, цезия, меди, кальция, стронция, алюминия, галлия, индия, скандия, лантана, европия, самария, иттербия, титана, сурьмы, ванадия, вольфрама, хрома, хлора, иода, марганца, железа, кобальта, практически не мешают другие элементы. Такие элементы, как серебро, магний, барий, кадмий, ртуть, золото, олово, мышьяк, селен, молибден, бром, никель, можно определять (с учетом вклада мешающего изотопа) по другим его гамма-липиям или другим гамма-линиям определяемых элементов. Серьезными конкурентами являются евроний, скандий нри определении цинка галлий — для кремния рубидий, золото — для германия бром, серебро — для мышьяка  [c.95]

    Таким образом, в книге рассматриваются следующие редкие металлы литий, рубидий, цезий, бериллий, скандий, иттрий, лантан и другие элементы группы редких земель, торий, уран, галлий, индий, таллий, германий, цирконий, гафний, ванадий, ниобий, тантал, молибден, вольфрам и рений — всего 44 металла, а также селен и теллур. [c.16]

    Азот N, алюминий А1, барий Ва, бериллий Ве, бор В, ером Вг, водород И, галлий Оа, германий Ое, железо Ре, ЛОТО Аи, иод I, кадмий СЛ, калий К, кальций Са, кислород кремний 81, литий и, магний М , марганец Мп, медь Си, ч ышьяк Л.s. натрий N3, олово 8п, ртуть Hg, рубидий КЬ, < пинец РЬ, селен 5е, сера 8, серебро Ag, стронций 8г, теллур Те, угле1Х)Д С, фосфор Р, фтор Р, хлор С1, хром Сг, цезий Сз, [c.8]

    Разделения методы (в аналитической химии) — важнейшие аналитические опера ции, необходимые потому, что большинство аналитических методов недостаточно селективны (избирательны), т. е. обнаружению и количественному определению одного элемента (вещества) мешают многие другие элементы. Для разделения при меняют осаждение, электролиз, экстракцию, хроматографию, дистилляцию, зонную плавку и другие методы. В качественном анализе для разделения ионов элементов применяют групповые реагенты, которые позволяют трудно разрешимую задачу анализа сложных смесей привести к нескольким сравнительно простым задачам. Рассеянные элементы — химические элементы, которые практически не встреча ются в природе в виде самостоятельных минералов и концентрированных залежей а встречаются лишь в виде примесей в различных минералах. Р. э. извлекают попутно из руд других металлов или полезных ископаемых (углей, солей, фосфори тов и пр.). К Р. э. принадлежат рубидий, таллий, галлий, индий, скандий, германий п др. [c.111]

    РЬ рубидий 1861 Р. Бунзен, Г. Кирхгорф (Германия) Обнаружен спектроскопическим методом в минерале лепидолите. В металлическом состоянии получен Р. Бунзеном в 1863 г. [c.165]

    Как уже указывалось, многие гетерополисоединения вольфрама и молибдена нашли практическое применение. В частности, они широко ипользуются в аналитической химии для определения ряда элементов. Так, фосфоромолибдат аммония-магния используется для определения магния, молибдена, фосфора. Для определения кремния, фосфора, германия, мышьяка и церия также применяют соответствующие гетеро-полимолибдаты. Рубидий и цезий определяются в виде кремнемолибда-тов и кремневольфраматов. [c.244]

    Сульфид бария 138 бора 152 висмута 405 галлия 183 германия 244—5 железа 836 индия 190 иттрия 617 кадмия 593 калия 60 кальция 118 кобальта 854 кремния 234 лантана 624 лития 19 марганца 800 меди 561—2 молибдена 778 мышьяка 369—71 натрия 39 никеля 868 олова 254—5 ртути 602 рубидия 74 свинца 269 серебра 571 скандия 610 стронция 128 сурьмы 384—5 таллия 201 углерода 208 фосфора 354—5 хрома 768 цезия 86 цинка 586 Сульфид, гидроаммония 286 бария 139 натрия 40 Сульфид, ди- 837 Сульфид, поли-аммония 287 калия 61 натрия 41 цезия 87 Сульфит 416, 418, 420 Сульфит, гидро- 417, 419, 421 [c.478]

    Цезий был открыт в 1860 г. Р. Бунзеном и Г. Кирхгоффом [1, 2] в воде Дюркгеймского минерального источника (Германия). В спектре солей щелочных металлов, выделенных из минеральной воды, Р. Бунзен и Г. Кирхгофф нашли вблизи голубой линии стронция две неизвестные голубые линии (455,5 и 459,3 нм). Цвет этих спектральных линий и дал повод обоим исследователям назвать новый элемент цезием (слово скз1ипг у древних римлян означало голубой цвет верхней части небесного свода ). Год спустя Р. Бунзен и Г. Кирхгофф открыли еще один неизвестный ранее элемент, названный ими рубидием. Изучая спектр гекса-хлороплатинатов щелочных металлов, осажденных из маточника после разложения одного из образцов лепидолита, Р. Бунзен и Г. Кирхгофф обнаружили две новые фиолетовые линии (420,2 и 421,6 нм), находящиеся между линиями калия и стронция, а также новые линии в красной, желтой и зеленой частях спектра. Среди всех этих линий для индентификации нового элемента исследователи выбрали две линии, лежащие в самой дальней красной части спектра (780,0 и 794,8 нм). По цвету этих спектральных линий новый элемент был назван рубидием (латинское слово гиЫйиз — темно-красный). [c.72]


    Ниже рассматриваются соединения рубидия и цезия с неметаллами V и VI групп периодической системы — азотом, фосфором, мышьяком, углеродом, кремнием и германием. Германий выступает в данном случае как кислотообразующий элемент вслед-ствие того, что германиды рубидия и цезия проявляют явно солеобразный характер. Бориды рубидия и цезия неизвестны и вопрос о возможности их существования до настоящего времени не вполне выяснен. [c.107]

    Метод Г, Яндера, Г, Фабера и Ф, Буша [252, 253], основанный на осаждении кремнемолибдатов рубидия и цезия, из-за отсутствия спроса на рубидиевые соли не был опробован даже в промышленных условиях. Причиной ограниченного использования рубидия являлась высокая стоимость его солей. В связи с этим немецкие химики в 30-х годах нашего столетия осуществили широкую программу исследований солевых равновесий для выбора наиболее рационального метода переработки карналлита [259—261], В 1932 г. д Анс и Ф. Буш [216] создали первую опытную установку для фракционированной кристаллизации карналлитов, которую вынуждены были вскоре закрыть из-за отсутствия спроса и кредитов. Извлечение рубидия из карналлитов в Германии возобновилось только в 1944 г., когда на калийном заводе Крюгерсхалль в Тойчентале под руководством д Анса была пущена новая установка производительностью 50 кз карбоната рубидия в месяц. Работа на этой установке прекратилась в апреле 1945 г. накануне капитуляции фашистской Германии. [c.301]

    Приведенные выше методы-были разработаны применительно к извлечению рубидия из стасфуртских карналлитов (Германия). Переработка Соликамских карналлитов (СССР) в тех же целях уже существенно отличается. Отсутствие в Соликамском карналлите растворимых сульфатов, небольшое содержание хлорида натрия и механических примесей, присутствие в значительно большем количестве хлорида калия (ср. с данным на стр. 302) значительно упрощают технологический процесс их химической переработки на магниевое, а затем и рубидиевое сырье. [c.307]

    Редкие металлы — все металлы, не включенные в предыдущие группы. К ним относятся тугоплавкие металлы — вольфрам, молибден, ванадий, тантал, титан, цирконий и ниобий, к ним же иногда относят кобальт легкие металлы — бериллий, литий, рубидий и др. рассеянные металлы — германий, галлий, таллий, индий и рений, к ним причисляют также селен и теллур, которые являются более металлоидами, чем металлами редкоземельные металлы — лантан, иттрий, гафний, церий, скандий и др. подгруппа радиактивных металлов— торий, радий, актиний, протактиний, полоний, уран и заурано-вые элементы. Из группы редких металлов часто выделяют [c.382]

    Основные научные работы относятся к аналитической и неорганической химии. Разработал практически важные методы определения калия, цинка, фтора в плавиковом шпате, апатитах, фосфоритах и др. Предложил (1967—1969) метод изучения гетерогенных систем с малорастворимыми компонентами (метод остаточных концентраций Тананаева). Исследовал фтористые соединения актинидов, редких и других элементов, что позволило ему выявить ряд закономерностей в изменении свойств комплексных фторметаллатов. Разработал методы получения сверхчистых кремния, германия и других полупроводниковых элементов. Установил закономерности образовашш смещанных ферроцианидов в зависимости от природы входящих в их состав тяжелого и щелочного металлов и разработал ферроцианид-ный метод извлечения рубидия и цезия из растворов калийных солей, создал ряд неорганических ионообменников, красителей и др. Провел физико-химические иссле- [c.484]

    Ингерсон [999] провел важную работу по фракционированию естественных изотопов, относительная распространенность которых не может быть связана с образованием или распадом радиоактивных изотопов. Среди рассмотренных им элементов были водород, гелий, бор, углерод, азот, кислород, неон, кремний, сера, хлор, калий, аргон, железо, медь, галий, германий, бром, рубидий и уран. Наиболее тяжелым элементом, для которого были получены убедительные доказательства естественного фракционирования, является германий найденная для него вариация в относительной распространенности изотопов оказалась равной 0,7% [782]. Для более легких элементов известны гораздо большие колебания в относительной распространенности изотопов. [c.101]

    Для металлургии редких металлов чрезвычайно важна комплексная переработка сырья, являющаяся необходимой предпосылкой дальнейшего развития промышленности редких металлов. В Программе Коммунистической партии Советского Союза, принятой ХХИ съездом, говорится Особенно ускорится производство легких, цветных и редких металлов.., . Одной из главных задач в области науки Программа считает совершенствование существующих и изыскание новых, более эффективных методов разведки полезных ископаемых и комплексного использования природных богатств . Это особенно важно для развития промышленности редких металлов, так как полиметаллические руды, главной составной частью которых являются цинк и свинец, часто содержат также (кроме сурьмы и мышьяка) кадмий, таллий, галлий, индий, германий, которые концентрируются в отходах производства свинцовых и цинковых заводов. Эти отходы являются, таким образом, исходным сырьем для получения целого ряда ценных элементов. Пыли и илы сернокислотного прозводства могут содержать селен, теллур, таллий. Шлаки черной металлургии могут служить источником получения ванадия и титана. Золы некоторых углей и сланцев содержат значительные количества германия, ванадия, иногда молибдена, галлия, циркония, редких земель и других элементов. В Калийных солях обнаруживаются рубидий, цезий, в глиноземном сырье — галлий, индий и т. д. [c.20]

    Тетрахлорид германия, в противоположность тетрахлориду олова (своего ближайшего аналога), не образует продуктов присоединения с простыми и сложными эфирами [570] и лишь очень избирательно реагирует с органическими катионами авторам работы [568] удалось синтезировать только гексахлоргерма-нат тетраметиламмония (сходный по внешнему виду с соответствующими соединениями рубидия и цезия) —[N (СНз)4]20еС1б ни с анилином и его гомологами, ни с триэтиламином соединений получить не удалось. [c.213]


Смотреть страницы где упоминается термин Рубидий с германием: [c.417]    [c.281]    [c.125]    [c.495]    [c.258]    [c.73]    [c.206]    [c.318]    [c.211]    [c.6]    [c.212]   
Химия и технология соединений лития, рубидия и цезия (1970) -- [ c.113 ]




ПОИСК





Смотрите так же термины и статьи:

Рубидий



© 2025 chem21.info Реклама на сайте