Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Рубидий с кремнием

    Напишите эмпирические формулы оксидов следующих элементов а) лития б) бериллия в) бора г) кремния д) азота е) мышьяка ж) селена з) рубидия и) стронция к) серебра л) кадмия м) индия н) олова о) сурьмы п) теллура р) цезия с) бария т) золота у) ртути ф) таллия х) свинца. [c.8]

    Назначение. Деактиваторы (инактиваторы, пассивато-ры) металлов — это присадки, подавляющие каталитическое действие металлов на окисление топлив. Деактиваторы, как правило, добавляют к топливу совместно с антиокислителями в концентрациях, в 5—10 раз меньших, чем антиокислитель. Они могут быть также компонентами двух- и трехкомпонентных присадок [1 — 11]. Установлено, что металлы переменной валентности являются сильными катализаторами окисления углеводородных топлив [1—5, II —17]. Металлы постоянно контактируют с топливами — в нефтезаводской, перекачивающей аппаратуре и в двигателях, входят в виде микропримесей в их состав. В топливных дистиллятах обнаружено присутствие алюминия, берилия, ванадия, висмута, железа, золота, кремния, калия, кальция, кобальта, меди, молибдена, натрия, никеля, олова рубидия, серебра, свинца, стронция, титана, цинка и др. [18—21]. [c.122]


    Азот. . , Алюминий Аргон. . Барий. Бериллий. Бор. . , Бром. . Ванадий. Висмут. . Водород. Вольфрам Галлий. , Гелий. . Железо, Золото. . Индий. . Иод. . . Иридий Кадмий. Калий. . Кальций, Кислород Кобальт Кремний Криптон. Ксенон. . Лантан. . Литий. . Магний Марганец Медь. . . Молибден Мышьяк. Натрий. . Неон. . . Никель. , Олово. Осмий. . Палладий Платина Радий. Радон. Рений. Родий. . Ртуть. . Рубидий,  [c.285]

    Платина Плутоний Радий Рубидий Рений Роди й Радон Рутений Сера Сурьма Скандий Селен Кремний Самарий Олово Стронций Тантал Тербий Технеций Теллур Торий Титан Таллий Тулий Уран Ванадий Вольфрам Ксенон Иттрий Иттербий Цинк Цирконий [c.187]

    Отдельные тома серии Аналитическая химия элементов будут выходить самостоятельно, по мере их подготовки. Вышли в свет монографии, посвяш,енные торию, таллию, урану, рутению, молибдену, калию, бору, цирконию и гафнию, кобальту, плутонию, бериллию, прометию, технецию, астатину и францию, радию, ниобию и танталу, протактинию, кремнию, магнию, галлию, фтору, алюминию, селену и теллуру, никелю, РЗЭ и иттрию, нептунию, трансплутониевым элементам, платиновым металлам, золоту, германию, рению, фосфору, кадмию. Готовятся к печати монографии по аналитической химии кальция, лития, ртути, рубидия и цезия, серебра, серы, углерода, олова, цинка. [c.4]

    Для многих металлов опытное значение Су близко к теоретической величине 24,942 Дж/моль-К. Например, для А1, Ре и Со Су=24,3 24,6 и 25,69 Дж/моль-К- Имеются исключения из этого правила. Для углерода, кремния, бериллия и бора опытные величины меньше теоретической, а для индия, натрия, рубидия и тория — выше опытной. [c.32]

    К этой группе веществ можно отнести фосфор белый (желтый), фосфористый водород, водородистый кремний, цинковую пыль, алюминиевую пудру, карбиды щелочных металлов, сернистые металлы, металлы — рубидий и цезий, арсины, стибины, фосфи-ны и др. [c.118]

    На территории АО "Каустик" в группировку компонентов минеральной основы почв, содержание которых коррелирует, входят алюминий, кремний, калий, а также титан (табл. 3.8). Связь с магнием и рубидием в данном случае не прослеживается. Из компонентов выбросов АО "Сода" достоверна зависимость между содержанием кальция и стронция. Содержание никеля положительно коррелирует с содержанием хрома, железа, марганца и свинца. На участках поля достоверны только положительные зависимости между содержанием алюминия и титана (табл. 3.9), а также калия и рубидия. [c.75]

    Численность муравьев достоверно коррелирует с содержанием в почве алюминия (г = -0,766), кремния (г = -0,754), кальция (г = 0,932), стронция (г = 0,756). Наиболее выраженная зависимость между численностью муравьев и содержанием в почве рубидия описывается выражением [c.135]


    Отдельные тома серии Аналитическая химия элементов выходят самостоятельно но мере их подготовки. Вышли в свет монографии, посвященные торию, таллию, урану, рутению, молибдену, калию, бору, цирконию и гафнию, кобальту, бериллию, редкоземельным элементам и иттрию, никелю, технецию, прометию, астатину и францию, ниобию и танталу, протактинию, галлию, фтору, селену и теллуру, алюминию, нептунию, трансплутониевым элементам, платиновым металлам, радию, кремнию, германию, рению, марганцу, кадмию, ртути, кальцию, фосфору, литию, олову, серебру, цинку, золоту, рубидию и цезию, вольфраму, мышьяку, сере, плутонию, барию, азоту, стронцию, сурьме, хрому, брому, ванадию, актинию, хлору. [c.4]

    Многие спектральные методы, разработанные для определения натрия в элементах, применимы для определения натрия в сплавах и соединениях этих элементов. Поэтому такие методы также рассмотрены в данном разделе. Спектральные методы применяют для определения натрия в рубидии [42, 421], магнии [1112], кальции [485], алюминии [537, 690, 820, 844, 956, 974, 1006, 1112, 1114, 1208, 1215], графите [936], кремнии [138], олове [388], свинце [495, 522, 773], ванадии [78], мышьяке [1007], сурьме [115, 149, 1007], ниобии [35], тантале [129], селене [123, 969, ИЗО], теллуре [123, 140, 1198], хроме [406, 679], молибдене [179, 469, 862], вольфраме [35, 469, 798, 898, 1013], уране [156, 589, 1054], осмии [124, плутонии [1245]. [c.163]

    Основная область применения окисей — электротехника [68]. Окисн цезия и рубидия, используемые в сложных фотокатодах в виде тонких пленок, образуются непосредственно в вакуумном приемнике излучения путем восстановления особо чистых хрома-тов рубидия и цезия при 700—800° С алюминием, кремнием или цирконием [34]. [c.84]

    Азот N, алюминий А1, барий Ва, бериллий Ве, бор В, ером Вг, водород И, галлий Оа, германий Ое, железо Ре, ЛОТО Аи, иод I, кадмий СЛ, калий К, кальций Са, кислород кремний 81, литий и, магний М , марганец Мп, медь Си, ч ышьяк Л.s. натрий N3, олово 8п, ртуть Hg, рубидий КЬ, < пинец РЬ, селен 5е, сера 8, серебро Ag, стронций 8г, теллур Те, угле1Х)Д С, фосфор Р, фтор Р, хлор С1, хром Сг, цезий Сз, [c.8]

    Реакция с галогенами сопровождается взрывом. Со взрывом идет зеакция с серой, двуокисью углерода и четыреххлористым углеродом 10]. При нагревании взаимодействуют с углеродом (графитом), красным фосфором и кремнием [10]. Выше 300° разрушают стекло, восстанавливая кремний из SIO2 и силикатов [6]. Оказывают сильное корродирующее действие на многие металлы и материалы. Гидриды их МеН образуются при нагревании расплавов в атмосфере водорода. RbH и sH менее устойчивы, чем LiH, и во влажном воздухе окисляются, воспламеняясь [10]. С азотом рубидий и цезий непосредственно не реагируют их нитриды МезЫ, получаемые взаимодействием паров металлов с азотом в поле тихого электрического разряда [6], менее устойчивы, чем LI3N. [c.84]

    В этот же период зародилось учение о валентности (Ф. Кекуле, Ш. Вюрц и др.), стали известными иовые хим. элементы (бор, литий, кадмий, селен, кремний, бром, алюминий, иод, торий, ванадий, лантан, эрбий, тербий, диспрозий, рутеш й, ниобий), с помощью введенного в практику спектр, анализа было доказано существование цезия, рубидия, таллия и индия. Было проведено определение и уточнение атомных масс мн. хим. элементов. [c.211]

    Все Э. X. образовались в результате многообразных сложных процессов ядерного синтеза в звездах и космич. пространстве. Эти процессы описываются разл. теориями происхождения Э. X., к-рые объясняют особенности распространенности Э. X. в космосе. Наиб, распространены в космосе водород и гелий, а в целом распространенность элементов уменьшается по мере роста 2. Такая жЬ тенденция сохраняется и для распространенности Э. х. на Земле, однако на Земле наиб, распространен кислород (47% от массы земной коры), далее следуют кремний (27,6%), алюминий (8,8%), железо (4,65%). Эти элементы вместе с кальцием, натрием, калием и магнием составляют более 99% массы земной коры, так что на долю остальных Э. х. приходится менее 1% (см. Кларки химических элементов). Практич. доступность Э. х.. определяется не только величинои их распространенности, но и способностью концентрироваться в ходе геохим. процессов. Нек-рые Э.х. не образзтот собств. минералов, а присугствуют в виде примесей в минералах других. Они наз. рассеянными (рубидий, галлий, гафний и др.). Э. х., содержание к-рых в земной коре менее 10 -10 %, объединяются понятием редких (см. Редкие элементы). [c.472]

    Как уже указывалось, многие гетерополисоединения вольфрама и молибдена нашли практическое применение. В частности, они широко ипользуются в аналитической химии для определения ряда элементов. Так, фосфоромолибдат аммония-магния используется для определения магния, молибдена, фосфора. Для определения кремния, фосфора, германия, мышьяка и церия также применяют соответствующие гетеро-полимолибдаты. Рубидий и цезий определяются в виде кремнемолибда-тов и кремневольфраматов. [c.244]

    В ряде случаев на предприятиях представлены не все типы анализируемых сообществ. В подобной ситуации для вычленения действия конкретных предприятий использовались анализы почвы под сообществами б с. Elytrigia repens (n = 23). Выявлено достоверное влияние конкретньк предприятий на содержание в почве калия, кремния, кальция, хрома, рубидия, стронция (табл. 3.6). [c.74]

    В пределах выделенных растительных сообществ в наиболее засушливых условиях (б.с. Ko hia s oparia) (см. рис. 2.1), находящихся, как правило, на повышениях микрорельефа, повышено содержание алюминия, кремния и рубидия. Отмечены минимальные концентрации кальция и стронция. По-видимому, вследствие поверхностного стока кальция и стронция происходит их накопление в понижениях микрорельефа. [c.75]


    Первые систематические исследования процессов металлотермического восстановления редких щелочных металлов были проведены русским химиком И. Н. Бекетовым [18, 19], получившим металлические рубидий и цезий действием алюминия на RbOH и tsOH. В дальнейшем в качестве исходных веществ для получения лития, рубидия и цезия была опробована большая группа соединений (галогениды, гидроокиси, карбонаты, сульфаты, хроматы, цианиды, алюминаты, силикаты и бихроматы) и значительное количество восстановителей (магний, кальций, барий, натрий, алюминий, железо, цирконий, кремний, углерод, титан). [c.385]

    Сульфид бария 138 бора 152 висмута 405 галлия 183 германия 244—5 железа 836 индия 190 иттрия 617 кадмия 593 калия 60 кальция 118 кобальта 854 кремния 234 лантана 624 лития 19 марганца 800 меди 561—2 молибдена 778 мышьяка 369—71 натрия 39 никеля 868 олова 254—5 ртути 602 рубидия 74 свинца 269 серебра 571 скандия 610 стронция 128 сурьмы 384—5 таллия 201 углерода 208 фосфора 354—5 хрома 768 цезия 86 цинка 586 Сульфид, гидроаммония 286 бария 139 натрия 40 Сульфид, ди- 837 Сульфид, поли-аммония 287 калия 61 натрия 41 цезия 87 Сульфит 416, 418, 420 Сульфит, гидро- 417, 419, 421 [c.478]

    Ниже рассматриваются соединения рубидия и цезия с неметаллами V и VI групп периодической системы — азотом, фосфором, мышьяком, углеродом, кремнием и германием. Германий выступает в данном случае как кислотообразующий элемент вслед-ствие того, что германиды рубидия и цезия проявляют явно солеобразный характер. Бориды рубидия и цезия неизвестны и вопрос о возможности их существования до настоящего времени не вполне выяснен. [c.107]

    Для получения моносилицидов рубидия и цезия порошкообразный кремний нагревают с трех- четырехкратным избытком щелочного металла в корундовом тигле, помещенном в герметично закрытую стальную бомбу, в атмосфере аргона при 600° С в течение трех-четырех суток. По окончании реакции бомбу медленно охлаждают, избыточный металл отгоняют в глубоком вакууме при 150— 180° С [223—22Гэ]. [c.113]

    В результате переработки поллуцита, литиевых и калиевых мийералов, радиоактивных отходов, рапы соляных озер и рассо- лов морского типа получаются рубидиево-цезиевые, цезиево-рубидиевые и рубидиево-калиевые концентраты в виде квасцов, хлоридов, сульфатов, карбонатов, нитратов и других солей рубидия и цезия. Такие концентраты содержат примеси калия, натрия, магния, кальция, кремния, алюминия, железа, хрома, титана и др. [c.334]

    Если исходный нитрат рубидия содержит примесь цезия, то перед получением перхлората рубидия [380] водный раствор нитрата обрабатывают кремневольфрамовой кислотой. Осадок крем-невольфрамата цезия, содержащий некоторое количество кремне-вольфрамата рубидия, отфильтровывают. Затем к фильтрату добавляют карбонат аммония и раствор нагревают до кипения для разрушения избытка кремневольфрамовой кислоты и осаждения 5102 пНаО. Второй фильтрат подкисляют соляной кислотой, упаривают досуха и обрабатывают водой для извлечения хлорида рубидия, который переводят в перхлорат нагреванием с избытком хлорной кислоты. [c.140]

    При кратком ознакомлении с ранними методами следует иметь в виду, что в то время сложность переработки и экономические соображения не имели особого значения, так как масштабы производства соединений лития, в силу ограниченного их применения, были незначительны. Поэтому многие методы из тех, которые ниже кратко описаны или упомянуты, представляют теперь только познава-. тельный интерес. Однако следует помнить, что подобные методы явились предшественниками современных, и на сопоставлении тех и других легко проследить, как развивалась научная технологическая мысль. К тому же некоторые из старых методов не утратили своего значения и сегодня, а иные переживают период переоценки, и вовсе не исключено, что на фоне общего технического прогресса (и благодаря ему) они окажутся весьма перспективными в недалеком будущем. Что же касается современных методов, особенно промышленных, то они немногочисленны и основаны на способах разложения, в результате которых после водной обработки материала удается получать технические растворы LiOH или (значительно чаще) LI2SO4, практически свободные от главных компонентов силикатного сырья — кремния и алюминия. Другим общим достоинством этих методов является их универсальность (как правило) — применимость к переработке различных видов сырья и пригодность их для попутного извлечения или концентрирования других ценных элементов, прежде всего частых спутников лития в минеральном сырье — рубидия и цезия. Небезынтересно отметить, что отходы современных производств соединений лития очень часто являются ценными продуктами, находящими применение в качестве вяжущих строительных материалов, заменителей дефицитных химикалий, удобрений. [c.227]

    По методу У. Шиффелина и Т. Каппона [28], который использовался в США [13, 15, 30], тонкоизмельченный (- 0,09 мм) лепидолит смешивали в стальном реакторе с концентрированной серной кислотой, взятой в количестве 110% (от массы минерала). Смесь выдерживали в течение 30 мин, а затем медленно, в течение более 8 ч, нагревали от 110 до 340° С по специальной прописи с фиксированной по времени выдержкой при определенных значе-ниях температур (степень разложения минерала достигала 94%). Скомковавшуюся массу еще в теплом состоянии обрабатывали водой, и, если из раствора выделялась двуокись кремния, ее отфильтровывали. В раствор переходили соли всех щелочных металлов, алюминия, марганца и железа. Для удаления алюминия в раствор вносили сульфат калия в количестве, рассчитанном на образование калиевых квасцов, первые порции которых особенно богаты рубидием и цезием, так что, проводя дробное выделение квасцов, можно было получать концентрат соединений рубидия и цезия. После отделения квасцов маточный раствор нейтрализовали карбонатом кальция. При этом отделяли остаток алюминия в виде гидроокиси. Далее осаждали кальций, магний, железо и марганец (щавелевой кислотой и раствором аммиака). Это обеспечивало получение чистого раствора сульфата лития. Из него с помощью карбоната калия осаждали технический карбонат лития, который промывали и высушивали при 60° С. [c.231]

    Остаток от разложения кремнемолибдатов рубидия и цезия, представляющий собой белый и рыхлый порошок, состоящий из хлоридов калия, рубидия и цезия и двуокиси кремния, подвергают двукратному выщелачиванию горячей водой кремневую кислоту отфильтровывают, а фильтрат упаривают досуха. Конечный продукт содержит 82 7о хлорида рубидия [252, 253]. [c.299]

    Осаждение дихлориодаата рубидия. Технический хлорид рубидия, содержащий Rb l 56—70, K l 9—23, s l 5—19 вес.%, а также примеси натрия, кремния, железа и других элементов, растворяют в воде (на 1 кг исходного продукта требуется 3,0 л воды), нерастворимый осадок отфильтровывают, а к фильтрату добавляют избыток серной кислоты. Кислый раствор упаривают досуха, до прекращения выделения паров серной кислоты. Сухой остаток сульфатов (с примесью гидросульфатов) растворяют в воде и раствор добавляют порциями при непрерывном перемешивании в [c.357]


Смотреть страницы где упоминается термин Рубидий с кремнием: [c.80]    [c.125]    [c.392]    [c.74]    [c.74]    [c.38]    [c.98]    [c.73]    [c.90]    [c.116]    [c.146]    [c.230]    [c.387]    [c.70]    [c.318]   
Химия и технология соединений лития, рубидия и цезия (1970) -- [ c.112 , c.113 ]




ПОИСК





Смотрите так же термины и статьи:

Рубидий



© 2025 chem21.info Реклама на сайте