Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Фтористые соединения, исследование методом ЯМР

    Влияние И. В. Тананаева на основные разделы химии трудно переоценить. Его диссертация Физико-химиче-ский анализ фтористых соединений и применение их в аналитической химии , за которую в сентябре 1939 года автору была присуждена ученая степень доктора химических наук, явилась весьма весомым вкладом в аналитическую химию фтора. Более ста опубликованных работ, оригинальный способ определения фтора в природном материале существенно развили ее. Это позволило изучить много различных систем методом физико-химиче-ского анализа. Такое исследование неорганических фторидов проводилось вначале в связи с потребностями зарождающейся в нашей стране алюминиевой промышленности, а позже-при разработке технологии ядерного горючего, становлении отечественной атомной промышленности. [c.53]


    Направление научных исследований прикладные исследования в области красителей, органических полупроводников, хелатов, фтористых соединений электрохимия и превращение энергии (топливные элементы, электродные материалы, катализаторы, батареи) биохимия, энзимология, продукты питания термостойкие материалы разработка аналитических методов химическое машиностроение. [c.154]

    Направление научных исследований электрохимия химия фтора и фтористых соединений фтористый водород как растворитель химия гетероциклических и ароматических соединений мостико-вые кольцевые системы протеины и терпены кинетика деградации полимеров использование меченых атомов в изучении высокомолекулярных веществ реакции переноса протона газожидкостная хроматография применение методов рентгеновской дифракции к изучению строения кристаллов и молекул микроволновая спектроскопия кинетика окислительновосстановительных реакций в растворе и твердом состоянии гетерогенный катализ теория, расчет и определение строения молекул. [c.258]

    В книге дается информация о наиболее полно исследованных к настоящему времени плазмохимических процессах и показывается разнообразие возможных применений плазмы в химических процессах. Рассматриваются методы генерации низкотемпературной плазмы и вопросы моделирования плазмохимических установок конструирование, расчет и эксплуатация ВЧ-плазматронов методы диагностики плазмы. Обсуждается конкретный плазмохимический процесс, имеющий большое народнохозяйственное значение, — фиксация атмосферного азота, а также рассматриваются вопросы синтеза фтористых соединений в плазме, имеющие большое значение для многих отраслей народного хозяйства и обороны страны. [c.4]

    Предварительное смешение серной кислоты с фосфорнокислыми растворами обеспечивает ее разбавление до концентрации 1,5—15%, способствует выделению фтористых соединений в газовую фазу, позволяет получать активную затравку, столь необходимую для процесса кристаллизации сульфата кальция. Как правило, серную кислоту вводят непосредственно в поток пульпы до вакуум-испарителя или после него. Изучению метода предварительного смешения серной кислоты с раствором разбавления и рециркулирующей пульпой в опытных и промышленных условиях посвящено специальное исследование [68]. [c.66]


    Представляет интерес сравнить способность фторидов различных элементов присоединять ионы фтора в растворах фтористоводородной кислоты. Материал для такого сравнения дают результаты исследований систем типа НР — МеР —Н2О методом изотермической растворимости. Из данных И. В. Тананаева [1, 2, 3], полученных при изучении систем НР — Мер — Н2О, следует, что все щелочные элементы первой группы образуют комплексные фториды состава Ме[НРг], где Ме = Ы, N3, К, № и Сз. В этих соединениях центром координации выступает протон, который предоставляет свои орбиты электронным парам ионов фтора. Для элементов второй группы (щелочноземельные металлы) характерны малорастворимые фториды типа СаРг, не присоединяющие дополнительно ионов фтора при контакте с фтористым водородом. [c.85]

    При исследовании относительной активности катализаторов катионной полимеризации С. В. Лебедев, а затем С. С. Наметкин и другие установили зависимость скорости и глубины полимеризации от состояния сернокислотного катализатора [25, 26]. В процессе изучения полимеризации олефинов в присутствии фтористого бора и его соединений А. Б. Топчиеву с сотр. удалось разработать специфический метод воздействия на активность катализатора и таким путем синтезировать олигомеры и полимеры нужной молекулярной массы [27]. [c.114]

    Одним из возможных путей решения данной проблемы является гидротермическая обработка фосфорных шлаков [13], которая может осуществляться при взаимодействии водяного пара с расплавленным шлаком. Выделяющиеся при этом газы, по данным лабораторных исследований, состоят главным образом из фтористого водорода, методы переработки которого на соединения фтора обще-. известны. [c.128]

    В 1949 г. американским исследователем Саймонсом было показано, что многие органические вещества относительно хорошо растворяются в безводном фтористом водороде, образуя электропроводящие растворы. При электролизе таких растворов на никелевых электродах происходит полное фторирование огани-ческого соединения с заменой атомов водорода на фтор. Этот метод получения фторорганически с соединений получил название фторирования по Саймонсу. Как показали более поздние исследования, механизм этого процесса заключается в том, что на поверхности никелевого анода в процессе электролиза образуются высшие фториды никеля №Рз и Ы1р4, которые действуют как сильные фторирующие агенты. [c.226]

    Как показали исследования, существующая воднонюислотная абсорбция не обеспечивает требуемого по санитарным нормам содержания фтора в газах из-за значительного давления насыщенных паров НР и 51р4 над водными растворами Н251Рб, а также наличия в газовой фазе тонкодисперсных фтористых соединений, не улавливаемых водой [94]. Для улавливания остаточных количеств фтора разработаны и внедрены в промышленность щелочная абсорбция, сорбция с применением ионообменных фильтров, активного угля и силикагеля, конденсация парогазовой смеси в сочетании с другими методами и др. [c.231]

    Молекулярные соединения фтористого бора с насыщенными углеводородами и их галоидпроизводными в литературе не описаны. Эти соединения плохо растворяют фтористый бор и обычно считаются инертными но отношению к нему. Так, растворимость BF3 в н.пентане при 49, 66 и 93° (рис. 13) и давлении от 3,8 до 14,8 атм равна от 1 до 12 мл BFg на 1 г н.пентана [120]. Исследование методом термического анализа систем BFg—GH3GI, BF3—GGIF3 и BF3—GF4 (рис. 14—16) ни в одном случае не позволило установить образования химических соединений [53, 57]. Такую инертность ряд исследователей объясняет неспособностью атомов углерода насыщенных углеводородов, как и атомов галоидов, быть донорами электронов для атома бора. [c.78]

    Органические соединения фтора летучи (их точки кипения часто ниже точек кипения аналогичных производных углеводородов), благодаря чему хроматографический метод к ним может быть широко применен. Изомерные или родственные фторпроизводные обычно обладают весьма близкими физическими свойствами, что сильно затрудняет разделение. Довольно часто встречаются также азеотроппые смеси. Вследствие трудностей синтеза фтористых соединений в распоряжении исследователя обычно имеются лишь небольшие количества вещества, поэтому принятая методика дистилляции непригодна. Мы применяли метод хроматографии газов в двух направлениях. Аналитические колонки были использованы для контроля реакций, исследования продуктов и т. д. Далее для нас было совершенно очевидно, что, если масштаб хроматографического процесса увеличить, он приобретет огромную ценность как препаративный метод. До сих пор исключительные трудности представляла задача очистки или разделения небольших количеств летучих соединений. Задача проведения процесса в препаративных масштабах [3] была достигнута быстро, и в настоящее время колонки, на которых можно перерабатывать от 1 до 10 г смеси летучих веществ, используются в обычных работах. [c.273]


    Газосмесительная установка для приготовления стандартных газовых смесей фтористых соединений и разработка методики их определения повышенной точности. Бужин А. Н, Инструментальные методы анализа и исследования в производствах серпо11 кислоты, минеральных удобреш и кормовых фосфатов. Труды НИУИФа, вып. 240. М., НИУИФ, 1982, стр. 108-118. [c.195]

    Другой способ, особенно эффективный при сильно экзотермическом фторировании, основан на разбавлении и быстром смешивании реагирующих веществ в горелке с форсункой или насадочными кольцами. Эта методика была разработана Тицковским и Биге-ловым [77, 78]. Технологические подробности даны в оригинальной литературе. Эффективность этой методики была показана на примере фторирования сероуглерода. Если не контролировать тщательно ход реакции, единственными продуктами будут 8Гб и СГ4, в то время как в пламенном реакторе получают разнообразные продукты, в том числе СЕзЗЕд [78]. Надлежащий контроль реакции фтора с различными соединениями обычно позволяет проводить селективное фторирование, а не фторирование всех имеющихся веществ. Прямая реакция фтора с жидкостью потенциально является рискованной и таких систем обычно следует избегать например, в таком случае необходимо очень сильное разбавление поступающего фтора. С другой стороны, многообещающим представляется фторирование соединений в растворе. Применение этого метода, однако, сильно ограничено требованием инертного ко фтору растворителя. Таким растворителем может служить фтористый водород, но, по-видимому, в этом направлении исследований не было. Вода реагирует с фтором (часто со взрывом), но скорость реакции можно сильно снизить 75—90%-ным разбавлением фтора азотом или гелием. Соединения можно фторировать в водных растворах разбавленным фтором. Этот способ до сих пор мало использовали недавно было проведено прямое фторирование полиэдрического борана [79], катиона борана [80] и мочевины [81] [c.330]

    В то же время, несмотря на недостатки, присущие фтору как фторирующему агенту, о которых мы говорили выше, элементный фтор и фтористый водород по-прежнему остаются базовыми соединениями в химии фтора. Естественно в связи с этим, что широким фронтом идут работы по совершенствованию методов фторирования действием фтора и развиваются новые способы проведения таких реакций. Мы рассматриваем эти подходы в главе 6, посвященной исчерпывающему фторированию органических соединений. Рекомендуем ознакомиться также с обзором Лагоу и Маргрейва [16], в котором глубоко проанализирован экспериментальный материал на эту тему по 1979 г. Перспективы и рост исследований в области химии фторорганических соединений тесно связаны с проблемой создания высокоселективных методов фторирования. Решение данной проблемы ведется в двух направлениях. Первое - создание новых технологий использования элементного фтора для проведения фторирования и целенаправленного синтеза фторорганических соединений заданной структуры. Второе - разработка новых фторирующих реагентов и создание их технологии. Наметилась тенденция широкого применения ряда органических соединений, содержащих при гетероатоме активный атом фтора и способных на сегодняшний день полностью заменить элементный фтор как реагент для получения фторсодержащих соединений с небольшим числом атомов фтора. [c.18]

    По-видимому, двумя наиболее существенными свойствами, которые могут быть использованы для определения относительных конфигураций, являются вращательная дисперсия и растворимость, т. е. характеристики, использованные первоначально Матье и Вернером. Этот метод может быть легко иллюстрирован примером одной недавней работы. 1-цис-[Соап Л У реагирует со смесью этанола и фтористого водорода (1 1) в присутствии карбоната серебра с образованием (1-цис-[Совп ] [166]. Предполагается, что при асимметрическом синтезе конфигурация сохраняется, так как кривые вращательной дисперсии реагента и продукта реакции очень похожи друг на друга (рис. 26). На рисунке видно также, что, хотя хлористое соединение является правовращающим в отношении линии натрия (590 Л1[д,), оно является левовращающим в отношении красной линии кадмия (644 жц), и, поскольку Вернер использовал в своих первых исследованиях линию кадмия, он приписал комплексу конфигурацию /-формы. Это указывает на необходимость при классификации оптических й- или г-изомеров [или (- -) или (—)] обязательно указывать длину волны. [c.199]

    Несмотря на большое число исследований, посвященных изучению каталитических свойств фтористого бора и его комплексов, количественные кинетические данные, направленные иа выяснение механизма реакций, катализируемых соединениями ВРз, в литературе практически отсутствуют. В связи с этим была поставлена задача на двух модельных реакциях — полимеризации изобутилена и декарбонилирования НСООН — определить кинетическим методом возможность протекания реакции через стадию образования координационных соединений ВРз с реагентами (апротопный катализ), а также природу каталитического действия и величину каталитической активности координационных соединений ВРз с промоторами. [c.285]

    Эванс и Поляни [45] обсуждают важное теоретическое значение использования сокатализаторов. Они описали механизм полимеризации, приняв такое же обозначение сокатализатора, как и указанное выше. Норрис и Рассел [133] разработали метод покрытия аппаратов соединением С дНззК "(СНз)зВг , чтобы сделать их гидрофобным и таким образом устранить воду со стеклянных стенок. Затем они сделали сообщение о результатах кинетических исследований по вопросу о роли воды в реакции полимеризации. Плеш, Поляни и Скиннер [157] показали, что влажный воздух усиливает активность четыреххлористого -титана в реакциях полимеризация, а поэтому необходимо пересмотреть сделанные ранее без учета присутствия влаги выводы об относительной активности серии катализаторов Фриделя-Крафтса. Плеш [154] исследовал низкотемпературную полимеризацию изобутилена над четыреххлористым титаном и нашел, что трихлоруксусная кислота является эффективным сокатализатором. Однако он нашел также, что монохлор- и дихлоруксусиая кислота такими свойствами практически не обладают. Эванс, Мидоу и Поляни [44] сообщили, что в реакции полимеризации изобутилена в присутствии фтористого бора сокатализаторами могут служить как уксусная кислота, так и вода и ттг/ ет-бутиловый спирт. [c.344]

    Первые исследования реакций алкилирования изопара[инов ациклическими олефинами с использованием в качестве катализатора НР были проведены фирмой "Юниверсал ойл продактс"[1б03. Алки-лирование изопара( инов пропеном, бутенами и пентенами одинаково легко протекает при комнатной температуре ЦК ] . 3 отличие от сернокислотного алкилирования некоторое повышение температуры реакций не вызывает ухудшения качества алкилатов отработанный катализатор легко выделяется из продуктов алкилирования и его расход не превышает 0,2% [162]. Непосредственно алкилирование сопровождается побочной реакцией присоединения НР к олефинам, что приводит к образованию относительно небольших количеств фтористых алкилов, которые при пропускании через слой СаР2 или АГР разлагаются с образованием смеси олефина и НР. При последующей обработке над фторидами щелочных металлов НР извлекается в виде двойных соединений типа г/ -/ [162]. К другим методам очистки от фтористых алкилов относятся обработка алкилатов гидратированной окисью алюминия [163,164] и медно-алюминиевыми сплавами [165]. [c.19]

    Четырехфтористый титан — чрезвычайно гигроскопичное твердое вещество (давление паров равно 1 ат при 184°С). Лучше всего получать его действием фтора на металл при 250 °С или на ДВУОКИСЬ титана при 350 °С можно, однако, приготовить Т1р4 также взаимодействием фтористого водорода и тетрахло-рида. Этот фторид растворяется в водной плавиковой кислоте, образуя раствор, содержащий ион Т из данного раствора легко получить умеренно растворимые соли щелочных металлов. Как и следовало ожидать, все эти соединения оказались диамагнитными, Калиевая соль , кристаллизующаяся из воды при температуре выше 50 °С, имеет ромбоэдрическую структуру, аналогичную КгОеРе каждый ион титана окружен шестью фторид-ионами, находящимися от него на расстоянии 1,917 А и расположенными в вершинах правильного октаэдра. Данная структура, определенная путем рентгеноструктурного анализа, была недавно подтверждена исследованием при помощи метода ядерного магнитного резонанса (ЯМР) , вероятно первым из проведенных с комплексными фторидами поскольку Р обладает ядерным моментом, этот метод приложим к изучению подобных соединений. Фторо-(IV) титанат калия может быть получен нагреванием при 300—350 °С в виде кристаллов, имеющих кубическую и гексагональную структуры , аналогичные соответственно К231Рб и КгМпРе. [c.96]

    До второй мировой войны эти соединения не привлекали серьезного внимания, если не считать ранних работ Свартса" и ряда польских ученых. Первым, детально исследованным соединением , был, метилфторацетат (МФА). Если метилхлораце-тат нагревать вместе с фтористым калием во вращающемся автоклаве при 220 °С, получается МФА с высоким выходом. Предложены методы, исключающие использование автоклава, но, как правило, выходы чистого продукта были низкими. [c.540]

    Еще недавно углеводороды служили образцом химической нейтральности . Сочетание слов углеводород — кислота и углеводород — основание прозвучало бы резким диссонансом для химиков. Правда, уже в течение нескольких десятилетий известны отдельные примеры кислотно-основных реакций углеводородов. Например, Краус с сотрудниками получал металлические соли углеводородов (трифенилметана и др.), хорошо проводящие электрический ток в жидком аммиаке. Это достигалось действием на углеводород раствора щелочного металла или амида металла в аммиаке. Некоторые химики (Конант, Уэленд, Мортон) рассматривали реакцию П. П. Шорыгина, состоящую в металлировании углеводородов щелочно-органическими соединениями, как вытеснение слабой кислоты из ее соли более сильной кислотой. Выполняя в лаборатории Фреден-гагена физико-химические исследования растворов органических веществ в жидком фтористом водороде, Клатт заметил высокую электропроводность раствора антрацена, которую трудно было объяснить иначе, чем ионизацией этого углеводорода по типу основания, растворенного в кислоте. Все же в течение долгого времени такие наблюдения были единичными, потому что слишком экзотичными для химиков являлись реагенты, подобные раствору амида калия в жидком аммиаке, жидкому фтористому водороду или, тем более, раствору фтористого бора в нем, обратимые реакции которых с некоторыми углеводородами имеют отчетливо выраженный кислотно-основный характер. Методы обнаружения более слабых протолитических реакций отсутствовали или были мало доступны. [c.107]

    В настоящее время удалось разработать еще более чувствительный метод количественного определения галлия. Божевольнов, Лукин и Гра-динарская изучали влияние заместителей на флуоресцентные свойства внутрикомплексных соединений галлия с диоксиазосоединениями и нашли, что 2,2, 4 -триокси-5-хлор-1,1 -азобензол-З-сульфокислота, при ее применении в водной среде, является реактивом на галлий более чувствительным, чем сульфонафтолазорезорцин, и, кроме того, ее комплекс с галлием извлекается изоамиловьш спиртом и флуоресцирует после этого более интенсивно [89—91]. В интервале значений рН=1,7—3,5 интенсивность флуоресценции комплекса галлия с этим реактивом практически постоянна. В случае равенства объемов изоамилового спирта и испытуемого водного раствора интенсивность флуоресценции извлеченного комплекса увеличивается в 3,5 раза. Интенсивность флуоресценции растворов реактива в присутствии галлия как в водных растворах, так и в изоамиловом спирте пропорциональна концентрации галлия, если последняя не превышает 0,5 у в 5 лл раствора. В водном растворе чувствительность реакции 0,01 у в 5 мл. При применении изоамилового спирта для извлечения комплекса и соотношении объемов изоамилового спирта и водного раствора 1 10 можно в последнем открыть галлий в количестве 0,0005 у в 5 мл, что соответствует предельному разбавлению 1 10 ООО ООО г/г. Детальное исследование влияния различных катионов и анионов на интенсивность флуоресценции галлиевого комплекса показало, что при количествах, в 100 раз-больших, чем содержание галлия, к тушению приводят Зи, Zг, Рг, а при количествах, в 10 раз больших,—Си, Ге, V, Мо. Остальные катионы не тушат даже нри 1000-кратном содержании. Алюминий способен образовывать флуоресцирующий комплекс, однако его флуоресценция менее интенсивна. При соотношении количеств галлия и алюминия 1 1 можно пренебречь присутствием последнего и выполнять измерения при pH раствора 1,7—3,5. В случае десятикратного избытка алюминия необходимо работать при pH растворов 1,7—2,7, а в случае стократного избытка— в еще более узком интервале значений рН = 1,7—2,2. Применение метода добавок (см. приложение УП, стр. 396 — определение алюминия в уксуснокислом натрии) позволяет проводить определения и в присутствии гасящих примесей. Реакция с морином применена для определения следов галлия в минералах [29, 100], нефтяных водах [100], метеоритах [100], биологических объектах [101]. От основной массы посторонних катионов освобождаются путем извлечения галлия эфиром из солянокислого раствора. С целью увеличения специфичности реакции применяют обычные аналитические приемы, например флуоресценцию, обусловленную алюминием, уничтожают прибавлением раствора, содержащего в 100 мл воды 3 г фтористого натрия, 1,8 г буры и 5 ледяной уксусной кислоты [29]. В [100], с целью повышения специфичности реакции, приводится метод определения галлия, основанный на измерении яркости флуоресценции хлороформенного раствора купферон-морин-галлиевого комплекса ). Авторы указывают, что разработанный ими метод чувствительней применяемого в спектральном анализе и позволяет определять галлий в количествах от 1 до-6 у в 6 мл хлороформа. [c.174]

    Органические производные галоидов в природе встречаются редко среди них особенно редки соединения фтора, насчитывающиеся буквально единицами. Искусственное получение многих фторорганических соединений было осуществлено еще в середине прошлого столетия, однако до конца первой четверти XX в. они не находили применения и их свойства оставались неисследованными. Начиная с 30-х годов текущего столетия, химия этих соединений получила стремительное развитие и в настоящее время выросла в большую и самостоятельную область органической химии. Поводом к ее развитию послужило возникновение атомной промышленности, где понадобились химически стойкие материалы — смазочные масла, прокладки, трубопроводы, устойчивые к действию агрессивных агентов. Ни один из известных до тех пор материалов органического происхождения не удовлетворял этим требованиям. Благодаря счастливой случайности действие фтористого урана было испытано на образце полностью фторированного углеводорода, который в очень небольшом количестве хранился в одном из университетов Англии он оказался устойчивым. Это наблюдение послужило толчком к изысканию новых методов исследования углеводородов, в которых атомы водорода полностью заменены на атомы фтора. Соединения этого типа (перфтор-углероды), естественно, оказались чрезвычайно стойкими к действию высокой и низкой температуры, окислителей, щелочей, металлов, негорючими, устойчивыми к действию микроорганизмов. Твердые пластмассы этого типа но многим свойствам оказались почти столь же устойчивыми, как и благородные металлы. До 1937 г. были известны лишь два перфторуглерода — перфторметан и [c.41]

    К. к.-о. приобрел за последние годы исключительно важное практич. значение в химич. процессах, осуществляемых в промышленном масштабе. К числу таких важнейших процессов относятся гидратация и изомеризация олефинов, этерификация спиртов, нитрование углеводородов, гидролиз крахмала и других полисахаридов, алкилирование ароматич. соединений, каталитич. крекинг нефти, синтез высокомолекулярных соединений методами ионной полимеризации и др. Процесс парофазной гидратации этилена в этиловый сиирт, являющийся основным источником синтетич. этилового снирта, осуществляется с использованием в качестве катализатора фосфорной к-ты, нанесенной на пористые силикатные носители. Аналогичные катализаторы применяются при парофазном алкилированип бензола олефинами. Катализаторами алкилирования ароматич. соединений в жидкой фазе служат хлористый алюминий или фтористый бор. Широкое применение в качестве катализаторов процесса полимеризации нек-рых непредельных углеводородов получили фтористый бор, хлорное олово и др. Напр., полимеризация иаобутилена при каталитич. действии BFg протекает с очень большой скоростью при весьма низких темп-рах (ок. —100°). Для каталитич. крекинга нефтп используют алюмосиликатные катализаторы, поверхность к-рых обладает кислотными свойствами- Большая практич. значимость К. к.-о. определила интенсивное развитие исследований в последние годы в области практич. использования кислот и оснований как катализаторов различных процессов и в направлении выявления закономерностей и механизма каталитич. действия этого класса соединепий. [c.241]

    Углеводороды и их производные. Электроокисление углеводородов изучается уже много лет, и имеется много работ, обобщенных в уже упоминавшейся в предыдущих разделах коллективной монографии [125]. Однако в последнее время появились интересные исследования соединений этого класса, в которых удалось обнаружить интермедиаты различной природы. Так, при электроокислении в среде безводного фтористого водорода комплексом электрохимических методов обнаружено [126], что изопентан (ВН) в двухэлектронном процессе образует относительно стабильный карб-катион В+, а наличие двух пиков на вольтамперограммах в кислой среде обусловлено окислением протонированной (ВНз) и непротонированной (ВН) форм деполяризатора, причем ВНг окисляется на электроде при значительно менее анодных потенциалах. В менее кислых средах ВН образует в качестве первичного продукта метастабильный радикал И, способный димеризоваться и полимеризоваться. [c.148]

    Пентафторфенол (QOH) был исследован недавно методами полярографии, циклической вольтамперометрии и другими способами на платиновом электроде в безводном фтористом водороде при различной кислотности [147]. В сильнокислых и сильнощелочных средах этот фенол образует радикальное промежуточное соединение Q0 (стабилизированное в кислой среде образованием протонированной формы рОН" ), которое при дальнейшем одноэлектронном окислении приводит к перфторциклогексадиепопу. В условиях электролиза при контролируемом потенциале наряду с этим последним продуктом образуются и продукты димеризации радикала Р0 различной структуры в зависимости от pH среды. [c.155]

    В экспериментальных работах рассмотрен ряд вопросов кинетики образования пленок из фтористых, кремний- и гер-манийорганических соединений и парафиновых углеводородов, состава и свойств пленок, результаты исследования пленок методом ЭПР. В сборник включена статья по вопросам совместной полимеризации двух веществ под действием тлеющего разряда. [c.2]

    Этот изотоп получают по реакции ( , п) из Ре (91,52%). Облученную в циклотроне мишень растворяют в кислоте. Затем Со очищается от радиоактивных примесей эфирной экстракцией железа и последующим выделением кобальта ионообменным способом по методике, описанной Томиловым [24] и Барой и др. [25]. Получающийся в результате этого процесса почти свободный от носителя активный Со наносится на подложку и каким-либо способом вводится в ее решетку. В случае химических соединений кобальта очевидным способом введения является их синтез. Этот метод использовался для исследований ацетоната [26] и цианида [27] кобальта и тетрафенилбората кобальта [28]. Если химическое соединение, которое хотят использовать в качестве матрицы, не содержит кобальта, как, например, фтористый цинк [29] и гало-гениды щелочных металлов, успешно применяется способ диффузии в различных условиях. [c.100]


Смотреть страницы где упоминается термин Фтористые соединения, исследование методом ЯМР: [c.31]    [c.209]    [c.192]    [c.196]    [c.209]    [c.203]    [c.7]    [c.464]    [c.116]    [c.244]    [c.119]    [c.195]    [c.338]    [c.96]    [c.64]    [c.74]    [c.56]   
Быстрые реакции в растворах (1966) -- [ c.258 ]




ПОИСК







© 2025 chem21.info Реклама на сайте