Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Вольт-амперометрия н полярография

    ВОЛЬТ-АМПЕРОМЕТРИЯ И ПОЛЯРОГРАФИЯ [c.70]

    Вольт-амперометрия и полярография [c.71]

    Вольт-амперометрия и полярография 73 [c.73]

    Вольт-амперометрия с применением ртутного капельного электрода обычно называется полярографией. Приборы, применяемые в этом методе, называются полярографами (описание их приведено ниже). [c.74]

    Вольт-амперометрия и полярография 93 [c.93]

    Вольт-амперометрия и полярография 77 [c.77]


    Вольт-амперометрия и полярография 99 [c.99]

    Наряду с методом стационарных поляризационных кривых, полярографией и импульсным гальваностатическим методом при исследовании кинетики электродных процессов используют многие другие методы, из которых в первую очередь необходимо отметить импульсный потенциостатический метод, вольт-амперометрию при линейно изменяющемся потенциале и метод фарадеевского импеданса. [c.152]

    Электрохимические методы, используемые для определения соединений азота, представлены следующими вариантами вольт-амперометрия (полярография) — прямая и инверсионная кондук-тометрия кулонометрия — определение при контролируемом потенциале или контролируемом токе хропопотенциометрия по-тенциометрия — определение по величине потенциала электрода (в том числе с использованием ионоселективных электродов). [c.110]

    ВоАьтамперометрия и полярография. Этот метод анализа заключается в приложении небольшой разности потенциалов к двум электродам, один из которых является неполяризуемым нормальным электродом, а другой — поляризуемым инертным электродом. Вольт-амперометрия есть обшее название этих методов анализа. Термин полярография используется только для тех методов, где роль поляризуемого электрода играет ртутный капельный электрод (РКЭ). Ампе-рометрия в основном подобна вольтамиерометрии, за исключением того, что в этом случае оба электрода могут быть поляризованы. [c.144]

    Диметоксиэтан AgNOa (нас.) Полярография и циклическая вольт-амперометрия 376 [c.225]

    Следует особо отметить, что классическая полярография, вольт-амперометрия с линейно изменяющимся потенциалом и обычная хронопотенциометрия пе позволяют непосредственно определить константу скорости последующей химической реакции, следующей за обратимым переносом электрона, так как в соответствующие уравнения (для каждого метода имеется лишь по одному уравнению) входят одновременно константа скорости последующей реакции и нормальный потенциал редокс-системы. Поэтому для определения скорости пос.ледующей реакции необходимо либо независимым путем определить редокс-потепциал системы, либо использовать методы с обращением тока, в частности циклическую вольт-амперометрию (см., например, [8, 9, 42, 46—48]). В последнем случае—при обращении поляризации электрода — по количеству электричества, затраченному на обратное превращение электродного продукта, полученного при прямой поляризации электрода и не успевшего вступить в последующую химическую реакцию,—можно непосредственно определить константу скорости этой последующей химической реакции. Так, например, из частотной зависимости величин площадей под катодным и анодным пиками осциллополярограмм с линейно изменяющимся потенциалом была найдена константа скорости химического превращения диапио-па, образовавшегося в результате обратимого переноса двух электронов на молекулу циклооктатетраена в 96%-ном диоксане [49]. Подобным же образом были изучены кетил-радикалы и кетил-анионы [50], возникающие нри обратимом переносе электрона на кетоны. [c.146]


    В водных растворах для катиона К-алкилпиридиния наблюдается двухстадийный процесс восстановления. Лучше изучена первая стадия восстановления, которая отвечает обратимому переносу одного электрона с образованием незаряженного радикала. Волна является диффузионной, ее 1/2 не зависит от pH, т. е. реакция протонирования не входит в потенциалопределяющую стадию [34]. Обратимость процесса доказана съемкой так называемых волн Фурнье [34, 38], методом треугольно-волновой вольт-амперометрии на стационарном ртутном электроде [37], переменнотоковой, импульсной и коммутаторной полярографией [39]. Однако процесс восстановления осложняется адсорбцией деполяризатора на ртути влияние адсорбции ослабляется при применении неводных растворителей [39]. Продукт одноэлектронного восстановления — незаряженный радикал может легко димеризоваться по 2- или 4-положениям, но, как показано в [39], преимущественно образуются 4,4 -производные  [c.248]

    К концу 50-х годов в полярографии органических соединений все чаще стали применяться вместо воды (водно-спиртовых смесей) в качестве растворителя высокополярные, апротонные неводные растворители (диметилформамид, ацетонитрил, диметилсульфоксид и др.). Сначала поводом для последних явилась ограниченная растворимость многих органических веществ в воде, а затем оказалось, что применение этих растворителей оправдано и тем, что вместо сложных многоэлектронных процессов в таких условиях протекают одноэлект-ронные, часто обратимые стадии. Это обстоятельство позволило электрохимическим методом получить и изучить большое число первичных свободных радикалов и ион-радикалов определенного строения, а именно, продуктов присоединения одного электрона к л-сопряженным системам. Плодотворной оказалась комбинация электрохимических методов со спектрометрией ЭПР при непосредственном проведении электрохимического процесса в резонаторе спектрометра ЭПР, впервые разработанная американскими исследователями Геске и Маки в 1960 г., Адамсом и др. Получение таких радикалов, расшифровка сверхтонкой структуры спектров ЭПР оказалось важным для квантовохимических расчетов сопряженных систем л-радикалов. Это обусловливает плодотворность применения полярографии для обнаружения таких свободно-радикальных частиц, как семихиноны, кетильные радикалы и т. д. Как известно, существование семихинонов впервые было постулировано Михаэлисом в 1934 г. по одноэлектронным скачкам на потенциометрических кривых, а впоследствии доказательством существования подобных радикалов стало наличие одноэлектронных ступеней на полярограммах определенных органических соединений. Для детекции и изучения стабильности таких свободных радикалов плодотворным оказался также метод вольт-амперометрии на висящей ртутной капле, предложенный для этой цели в 1958 г. польским химиком Кемулей. [c.138]

    Электроосаждение уже давно применйется для количественного разделения и определения металлов, однако большинство работ в этой области имеет чисто эмпирический характер. Для получения удовлетворительных результатов необходимо регулирование в определенных границах таких разных факторов, как плотность тока, концентрация, кислотность, температура, скорость перемешивания, наличие комплексантов и органических добавок. В данной главе рассмотрены основные положения электролитического разделения, которые помогут читателю разобраться в существе практических операций. Электроаналитические методы, основанные на использовании взаимозависимости между силой тока, напряжением и временем, не рассматриваются. Так, не будут обсуждаться многие ведущие методы, такие, как полярография, циклическая вольт-амперометрия и хронопотенциометрия, а также такой классический метод, как потенциометрическое определение конечной точки титрования. [c.282]

    В быстром признании термина амперометрическое титрование сыграло роль еще одно обстоятельство, а именно все больший отход амперометрического титрования от полярографии в том смысле, что вместо ртутного капающего электрода— основного инструмента полярографии — теперь для индикации конечной точки применяют главным образом не ртутный, а различные твердые электроды, а та область электрохимического анализа, которая раньше называлась полярографией, сейчас является частным случаем более широкого понятия, характеризуемого термином вольт-амперометрия . В соответствии с этим поля-рограммы, снимаемые не на ртутном, а на твердых электродах, правильнее называть вольт-амперными кривыми. Авторы настоящего, третьего, издания Амперометрического титрования по мере возможности придерживались этого правила. [c.8]

    В настоящее время для изучения промежуточных частиц при> меняют разнообразные электрохимические методы, относящиеся к группе непрямых по классификации Геришера. Среди них вольт> амперометрия и ее современные модификации занимают ведущее место. В ряде обзоров (например, [22]) и монографий [17, 23) подробно описаны приемы и способы полярографического исследования, а также возможности полярографии при изучении механизма электрохимических процессов в различных условиях, в том числе и в неводных средах. Анализ кривых ток—потенциал позволяет оценить константы скорости переноса заряда при условии, что массоперенос играет назначительную роль или его можно учесть. Благодаря очень хорошей воспроизводимостд полярографических данных, полученных с ртутным капающим электродом (р.к.э.), полярография весьма чувствительна к изме нению механизмов процессов. Хуже обстоит дело с твердыми электродами в вольтамперометрии, особенно когда продукты реакции склонны адсорбироваться на их поверхности (из-за раз -нообразия их взаимодействия с поверхностью электрода и нево спроизводимости результатов измерений.) [c.11]


    Е. Якобсен и Т. Якобсен исследовали электрохимическое восстановление либриума методами полярографии, циклической вольт-амперометрии и кулонометрии при контролируемом потенциале. В среде 0,1 М раствора Н2504 либриум восстанавливается с образованием двух двухэлектронных диффузионных волн, первая из которых обусловлена восстановлением К-оксидной группы, а вторая С = К—группы. При каждой ступени восстановления расходуются два протона. Ток восстановления пропорционален 2,5-10 —10 М концентрации либриума, что позволяет быстро определять его количественно в таблетках на фоне 0,1 М раствора Нг504. Кроме того, либриум прочно адсорбируется на электроде и поэтому его можно определять в биологических материалах без предварительного выделения. [c.161]

    В последнее время исследовалось электрохимическо восстановление левомицетина методами переменнотоко вой, дифференциальной и пульс-полярографии, цикличес кой вольт-амперометрии, кулонометрии и хронопотенцио метрии, которые подтверждают и дополняют данньк классической полярографии. [c.216]


Смотреть страницы где упоминается термин Вольт-амперометрия н полярография: [c.204]    [c.110]    [c.247]    [c.330]    [c.10]    [c.110]   
Смотреть главы в:

Инструментальные методы химического анализа -> Вольт-амперометрия н полярография




ПОИСК





Смотрите так же термины и статьи:

Амперометрия

Вольта

Полярограф

Полярография

Полярография и амперометрия



© 2025 chem21.info Реклама на сайте