Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Потенциометрическое титрование определение конечной точки

    Потенциометрическое титрование объединяет способы определения конечной точки титрования (КТТ), основанные на зависимости потенциала индикаторного электрода от объема добавленного титранта. Примеры кривых такой зависимости представлены на рис. 7.1. По сравнению с прямыми измерениями полученные при потенциометрическом титровании данные более точно и правильно характеризуют концентрацию определяемого вещества, поскольку не зависят от его активности. Кроме того, в методах потенциометрического титрования к электродам предъявляются менее жесткие требования в отношении стабильности потенциала и крутизны наклона электродной функции. Электроды, непригодные для прямых потенциометрических измерений, могут отвечать требованиям потенциометрического титрования. Наконец, методы потенциометрического титрования позволяют находить концентрацию анализируемого компонента даже в присутствии мешающих ионов, если титрант селективно взаимодействует с определяемым веществом. [c.230]


    Измерение электродных потенциалов лежит в основе потенциометрии. Потенциометрия применяется, например, для определения конечных точек титрования (потенциометрическое титрование). В зависимости от типа используемых при титровании реакций различают потенциометрическое титрование по методу осаждения, комплексообразования, нейтрализации и окислительно-восстановительное потенциометрическое титрование. В первых двух разновидностях потенциометрического титрования используют электроды, обратимые по отношению к ионам, которые входят в состав осадка или комплексного соединения. Потенциал таких электродов определяют относительно какого-либо электрода сравнения в ходе постепенного добавления титранта. Потенциометрическое титрование, например, очень удобно для определения анионов, образующих нерастворимые соли с ионом серебра. При этом часто в качестве индикаторного используют серебряный электрод. [c.276]

    Результаты определений методом потенциометрического титрования более точны, чем при использовании прямой потенциометрии, так как в этом случае вблизи точки эквивалентности небольшому изменению концентрации соответствует большое изменение потенциала индикаторного электрода. В ходе титрования измеряют и записывают э.д.с. ячейки после добавления каждой порции титранта. В начале титрант добавляют небольшими порциями, при приближении к конечной точке (резкое изменение потенциала при добавлении небольшой порции реагента) порции уменьшают. Для определения конечной точки потенциометрического титрования можно использовать различные способы. Наиболее простой способ состоит в построении кривой титрования —графика зависимости потенциала электрода от объема титранта (рис. 2.9, а). [c.116]

    СПОСОБЫ ОПРЕДЕЛЕНИЯ КОНЕЧНОЙ ТОЧКИ ПОТЕНЦИОМЕТРИЧЕСКОГО ТИТРОВАНИЯ [c.248]

    Потенциометрический метод определения конечной точки, лежащий в основе автоматизации процесса титрования, является одним из наиболее важных. Метод измерения электропроводности (см. раздел П. 3) также позволяет определить конечную точку. [c.97]

    Для экстраполяции используют такие участки кривой титрования, где в избытке находится или титруемый ион, или реагент, т. е. участки, где равновесие практически полностью сдвинуто в сторону образования продукта реакции. На этих участках кривой зависимость А = = f (с) [или А = f (а)] обычно имеет прямолинейный характер, т. е. закон Бера соблюдается. Конечную точку титрования находят, продолжая прямолинейные участки кривой титрования до их пересечения (рис. 24, кривая 2). Благодаря этому спектрофотометрический метод определения конечной точки титрования позволяет проводить титрование растворов с низкими концентрациями и использовать реакции, обладающие малыми константами равновесия (например, образование малоустойчивых комплексов, титрование слабых кислот и оснований, реакции окисления — восстановления при малых значениях разности потенциалов), и имеет большие преимущества по сравнению с методами, в которых точку эквивалентности определяют по скачку титрования (например, потенциометрическое титрование). Помимо графического метода определения конечной точки титрования рекомендуется применять также алгебраический метод, основанный на использовании метода наименьших квадратов. Для прямолинейных участков кривой 1 (см. рис. 24) до и после момента эквивалентности будут справедливы соответственно следующие уравнения прямых  [c.57]


    Действие чувствительного устройства в большинстве продающихся автоматических титраторах основано на определении конечной точки титрования потенциометрическим или фотометрическим методами. В большинстве титрований потенциометрическим методом применяют стеклянные, платиновые или серебряные чувствительные электроды. Еще большую универсальность потенциометрического титрования обеспечивают разработанные недавно специфические ионные электроды. В автоматическом титровании фотометрическим методом применяют специальные сбалансированные фотоэлементы, снабженные цветными и нейтральными фильтрами. После настройки прибора с учетом фона он обеспечивает точное воспроизведение конечной точки титрования. Свет [c.396]

    Очень часто при объемном определении урана, основанном на окислительно-восстановительных реакциях, реже на реакциях осаждения, используют потенциометрический метод определения (Конечной точки титрования. [у [c.213]

    Описано проведение анализов с помощью потенциометрических методов определения конечной точки при титровании аминного азота с помощью формалина [3,10]. Потенциометрическое определение конечной точки при ацидиметрическом титровании применялось также в работе, посвященной подбору подходящей аппаратуры для дифференциального титрования [31]. Потенциометрический метод определения конечной точки в оксидиметрии применяли при определении железа дифференциальным титрованием раствором соли трехвалентного титана [16], а также при изучении наиболее простых методов дифференциального титрования [31]. В каждом из указанных случаев применялись разные конструкции электродов, и вообще невозможно описать такую аппаратуру для потенциометрического титрования, которая могла быть использована во всех случаях .  [c.59]

    Определение конечной точки титрования. Определение конечной точки неводного титрования отнюдь не является простым. Прежде всего, интервалы pH, в которых кислотно-основные индикаторы изменяют свой цвет в неводных растворителях, отличаются от таковых в воде, а цветовые изменения являются иными, чем в воде, вероятно, из-за образования ионных пар и других структурных (электронных) изменений в молекулах индикаторов, вызванных сольватацией молекулами растворителя. Несмотря на это некоторые из наиболее известных кислотноосновных индикаторов, включая метиловый фиолетовый, метиловый красный, фенолфталеин и тимолфталеин, удовлетворительно функционируют в неводных растворителях. Однако проследить за протеканием кислотно-основного неводного титрования лучше всего потенциометрическим методом. Подробно техника потенциометрического титрования описана в гл. 11. [c.165]

    Дифференцируя дважды уравнение кривой титрования и приравнивая вторую производную нулю, можно легко показать [1], что на симметричной кривой титрования tii = П2) точка максимума теоретически совпадает с точкой эквивалентности. Это положение лежит в основе потенциометрических методов определения конечной точки. Вместе с тем при /ii 2 и асимметричности кривой титрования вблизи точки эквивалентности в случае, если точку перегиба принимают за конечную точку, наблюдается небольшая теоретическая ошибка. Однако эта ошибка не имеет никакого практического значения, так как она очень незначительна в сравнении с ошибками, связанными с неточностью стехиометрических соотношений, медленным течением реакции при титровании, длительностью установления электродного равновесия и т. д. [c.312]

    Кривые потенциометрического кислотно-основного титрования являются отображением изменения pH раствора. Поэтому в качестве индикаторных электродов применяют рН-чувствитель-ные электроды, потенциал которых зависит от концентрации ионов водорода. Обычно используют стеклянный электрод. Хотя такое титрование и представляет в настоящее время рутинный аналитический метод, иногда экспериментальные кривые не совпадают с теоретическими, поскольку при построении последних оперируют концентрациями, а не активностями ионов. Однако возникающая при этом небольшая погрешность не имеет существенного значения при определении конечной точки титрования. Потенциометрическое кислотно-основное титрование особенно удобно при анализе многоосновных кислот (оснований) или смесей кислот (оснований), поскольку позволяет обеспечить их раздельное определение. [c.234]

    Разработаны методики определения многих окислителей, в большинстве случаев основанные на добавлении избытка Ti и обратном титровании его железом (III) в присутствии тиоцианата в качестве индикатора [2, 88]. Авторы часто применяют потенциометрический метод определения конечной точки титрования. [c.411]

    Различают три способа потенциометрического титрования прямое, дифференциальное и по второй производной. Последние два способа применяются для увеличения точности определения конечной точки. [c.8]


    Для исключения ошибки, связанной, в основном, с присутствием в растворе СОг, проводят также предэлектролиз фонового раствора. Для этого в ячейку вносят раствор фона и фенолфталеина, доводят объем до 20 мл дистиллированной водой и титруют до изменения окраски индикатора. Повторяют опыт с новыми порциями раствора фона несколько раз и вычисляют среднее значение времени предэлектролиза. При расчете время, затраченное на предэлектролиз фона, вычитают иЗ времени, затраченного на титрование кислоты в этом фоне. Повторяют определение с новыми аликвотными порциями раствора, используя потенциометрический метод индикации конечной точки титрования. При этом поступают согласно описанию в разд. 2.6.1. [c.168]

    Визуальное наблюдение изменения окраски индикатора представляет собой наиболее простой и обычно более быстрый способ определения конечной точки кислотноосновного титрования. Если конечная точка потенциометрического титрования хорошо определяется и точка перехода окраски индикатора соответствует этой конечной [c.31]

    Под термином потенциометрическое титрование объединяют методы определения конечной точки на основе зависимости потенциал — объем добавленного титранта в исследуемую систему. С помощью потенциометрического титрования могут решаться как аналитические, так, и физико-химические задачи, например  [c.38]

    Разнообразные варианты кулопометрического титрования электрогенерированными ионами Н" и ОН" используются для определения минеральных кислот и оснований [290, 291, 318, 320, 326, 448, 538, 552—554, 559—575], слабых органических оснований [555—558, 576, 577] и кислот (бензойной, фталевой, адининовой и др. [299, 552, 573—581]). Широко применяются способы определения углерода в различных объектах, основанные на поглощении углекислого газа стандартным раствором едкого бария и оттитровывании остаточного основания электрогенерированными ионами Н+ [582—586]. Кулонометрическое определение малых количеств бора основано на титровании маннитового комплекса Н3ВО3 электрогенерированными ионами ОН" с фотометрическим [587, 588] (индикатор — метиловый красный) или потенциометрическим [589] определением конечной точки. При определении борного ангидрида в тяжелой воде [589] поступают следующим образом. В электролитическую ячейку, снабженную генераторным платиновым катодом, стеклянным электродом, трубкой для подачи азота и соединенную солевыми мостиками [c.66]

    Кривые потенциометрического титрования, приведенные на рис. 7.24, показывают, что резкость эквивалентной точки в значительной степени определяется природой третичного амина, образую-ш,егося в реакции. Эта зависимость особенно выражена у продукта реакции морфолина со сложными эфирами малеиновой и фумаровой кислот. Кривая 4, относящаяся к этому продукту, показывает, что он является слишком слабым основанием, чтобы его можно было определить визуальным или потенциометрическим титрованием. Низкую основность таких аминов следует объяснить тем, что третичный атом азота находится в а-положении относительно сильной электроноакцепторной группы. Хотя такой кислотный растворитель, как уксусная кислота, повышает основность этих аминов, он усиливает и основность амидов в такой степени, что они начинают мешать титрованию. Все же эти слабые амины удается определить кондуктометрическим титрованием. На рис. 7.25 показаны кривые кондуктометрического титрования аминов, образующихся при реакции морфолина с диэтилфумаратом и ди-(2-этилгексил) малеинатом. В этом случае для определения конечной точки можно воспользоваться кривой титрования, так как по обе стороны от точки эквивалентности кривые титрования прямолинейны. При определении следует пользоваться только точками, лежащими на этих прямолинейных отрезках кривых, пренебрегая точками, лежащими вблизи конечной точки. При этом способе необходимо брать небольшие навески, так чтобы весь объем титранта был не более 20 мл. Так как при каждом анализе необходимо строить отдельную кривую, этот метод трудно приспособить к рутинным серийным определениям. Однако опытными аналитиками при определении чистоты сложных эфиров малеиновой и фумаровой кислот результаты были получены с точностью 0,2%. [c.360]

    Метод волюмометрического определения карбоновых кислот с использованием стандартного щелочного раствора в водных и неводных средах хорошо изучен [73]. Однако титрование с использованием стандартных растворов не столь удобно (а возможно, и не столь точно), как кулонометрическое титрование. В последнем методе стандартный раствор для титрования генерируется электролитически в процессе самого титрования непосредственно в сосуде с анализируемым раствором. Концентрацию неизвестного соединения вычисляют по измеренному количеству электричества, прошедшего через раствор, на основе законов Фарадея. В этом методе совершенно не требуется стандартных растворов, а во многих случаях и стандартных проб. Более того, измеряемым титрующим раствором здесь является количество электричества (а точнее интервал времени, в течение которого включен источник постоянного тока), и анализ легко автоматизировать подавать в анализируемый раствор определенное количество электричества и измерять его легче и дешевле, чем порции стандартного раствора. Системы детектирования в этом методе те же, что и в обычном титровании, так что метод потенциометрического определения конечной точки титрования можно успешно использовать и здесь. [c.144]

    Логарифмическая зависимость уравнения Нернста, связывающая потенциал электрода и концентрацию (активность) по-тенциалопределяющего вещества (чаще всего ионов) в растворе, очень удобна для определения конечной точки титрования при аналитическом определении концентрации вещества. Метод титрования, при котором конечная точка определяется по разности потенциалов соответствующей электрохим1ической ячейки, называется потенциометрическим титрованием. [c.323]

    Для определения конечной точки был использован метод производного полярографического титрования , заключающийся в потенциометрическом титровании при постоянной силе тока с применением двух поляризуемых электродов. Индикаторными электродами служили две платиновые проволоки, которые поляризовались постоянным током (1,1 —1,3 мка) в качестве источника [c.222]

    При обсуждении титрования третичных аминов хлорной кислотой в метилцеллозольве не рассматривались средства для определения конечной точки титрования для аминов, указанных в табл. 11.44, точки перегиба кривых потенциометрического титрования были соотнесены с интервалами перехода окраски некоторых индикаторов. В свою очередь эти цветовые переходы (интервал pH) были сопоставлены с основностью (в воде) этих аминов. Оказалось, что можно подобрать для титрования данного амина подходящий индикатор, зная приблизительное значение константы диссоциации Кь этого амина. [c.476]

    На рис. 7.1 6 показаны типичные кривые осадительного титрования, а также различные способы нахождения конечной точю титрования (непосредственно по интегральной кривой, по первой п второй производной). Необходимо помнить, что погрешность определения конечной точки влияет ва погрешность потенциометрического титрования. [c.374]

    Разнообразные варианты кулонометрического титрования электрогенерированными Н+ и 0Н используются для определения минеральных кислот и оснований [391, 392, 419, 421, 427, 596, 764, 769—771, 776—792, 812—814], слабых органических оснований [772—775, 793, 794] и кислот (бензойной, фталевой, адипиновой и др. [400, 769, 790—798, 810, 811, 813-816]). Широко применяются способы определения углерода в различных образцах, основанные на поглощении углекислого газа стандартным раствором гидроокиси бария и оттитровывании избытка основания электрогенерированным Н+ [799—803, 820— 825]. Кулонометрическое определение малых количеств бора [804—806, 827—831] основано на титровании маннитового комплекса Н3ВО3 электрогенерированным ОН с фотометрическим [804, 805] (индикатор — метиловый красный) или потенциометрическим [806] определением конечной точки. [c.99]

    Потенциометрическим методом определения конечной точки титрования можно воспользоваться, чтобы подобрать подходящий индикатор для визуального титрования какой-либо конкретной основной функции в неводном растворителе. Потенциометрическое титрование обычно требуется и для одновременного определения нескольких основных веществ в растворе. Кенттамаа и Хейнонен вычисляли отношение констант диссоциации основания и его соли в уксусной кислоте по наклону кривой титрования основания в ледяной уксусной кислоте. [c.400]

    Метод определения конечной точки титрования. Определение конечной точки титрования осуществляют как потенциометрическим методом, так и по изменению окраски трифенилметановых красителей, как например, метиловый кристаллический и гентиа-новый фиолетовый. [c.221]

    Потенциометрическое титрование с дифференциальным электродом. Метод дифференциального потенциометрического титрования, подробно описанный выше в разделе, посвященном ацидиметрии, был практически использован при работе с хингидронной окисли-тельно-восстановительной системой. Титрование других окислительно-восстановительных систем также может быть осуществлено с помощью этого метода. Вместо того чтобы для установления оки-слительно-восстановительной системы добавлять хингидрон, можно измерять собственные окислительно-восстановительные потенциалы реагирующих веществ и по этим потенциалам определять конечную точку титрования. Известно несколько работ, посвященных применению потенциометрических оксидиметрических методов для титрования очень малых количеств вещества. Дубноф и Кирк [4] пользовались дифференциальным потенциометрическим методом определения конечной точки при титровании ионов трехвалентного железа ионами трехвалентного титана. Вследствие необходимости полного исключения кислорода при работе с растворами, содержащими трехвалентный титан, установка для такого титрования значительно сложнее описанной выше установки для работы с хингидронными электродами. Метод Дубнофа и Кирка подробно изложен при описании редуктометрического определения железа. [c.154]

    Визуальное определение конечной точки титрования часто сопряжено с трудностями. Выбор индикатора зависит от типа кривой титрования ipaзд. 3.4.2.1). Чем больше величина скачка в точке эквивалентности, тем благоприятнее предпосылки для резкого изменения окраски от наименьшего количества добавляемого титранта (1 капля). Принципиально подобные же соображения справедливы при оценке кривой полученной при потенциометрическом титровании (см. стр. 121). [c.76]

    В кулонометрическом титровании используется метод электролитического генерирования (образования) титранта. В этом случае получается картина, похожая на обычное титриметрическое определение, отличаю1дееся тем, что титрант получают в ходе самого титрования. Поэтому такой метод гальваностатической кулонометрии получил название кулонометрического титрования, а электрод, на котором получают (генерируют) титрант, называют генераторным электродом. Для определения конечной точки при кулонометрическом титровании используются потенциометрический, амперометрический, фотометрический или другие методы индикации. [c.56]

    Индикаторная система. В кулонометрическом титровании для определения конечной точки обычно используются потенциометрический, амперометрнчеокий и реже спектрофотометрнческий методы. [c.85]

    Величина скачка потенциала существенно зависит от концентрации титрующего и титруемого растворов. Чем эта концентрация меньше, тем менее отчетлив скачок потенциала в эквивалентной точке. Поэтому в расчетах необходимо учитывать изменение концентрации, обусловленное увеличением объема смеси в ходе титрования. Для сильных кислот конце 1трация в 0,001 и. является предельно малой, при которой еще возможно вести потенциометрическое титрование. При этом титрующий раствор должен бытьпримерно в 10 раз более крепким. Слишком большая разница в концентрации титрующего и титруемого растворов может привести к заметным ошибкам в определении конечной точки титрованяя. [c.144]

    Другим важным элементом титрования, от которого зависит точность измерения, является метод определения конечной точки. В методах титрования, которые рассматриваются ниже, использовались главным образом потенциометрические способы определения эквивалентной точки при нулевом токе, а также окислительно-восстановительные индикаторы. Небольшое применение нашли методы потенциометрического титрования при заданном токе с двумя поляризованными электродами и совсем не использовались методы потенциометрического титрования при заданном токе с одним поляризованным электродом и метод амперометрического титрования при постоянном напряжении с двумя поляризованными электродами [82], Последние три метода имеют простое аппаратурное оформление и могут иметь серьезные преимущества в определении конечной точки для малообра.-тнмых систем. [c.180]

    Техника, использованная для осуществления обсуждаемых в этой книге методов, проста и обычно для проведения анализа специального оборудования не требуется. Методы по своему характеру являются тптриметрическими или колориметрическими. Титриметрические методы имеют наибольшее значение для определения больших концентраций органических соединений, в то время как колориметрические методы рекомендуются для определения ультрамикроконцентраций. В данном руководстве указываются индикаторы для определения конечных точек практически всех титрований однако иногда рекомендуется потенциометрическое титрование, и в этих случаях необходимо использовать стандартные рН-метры. Для колориметрических методов требуется спектрофотометр с видимой частью спектра. [c.10]

    Миллиграммовые количества серебра титруют кулонометрически электрогенерированным моноэтиленгликолем [1214] и цианид-ионами [535] с потенциометрическим определением конечной точки титрования. Купонометрическое титрование иодид-ионами можно проводить в расплаве нитратов лития и калия при 430 °К [11981. [c.132]

    Различные исследователи1 1 1 успешно применяли высокочастотное титрование хлорной кислотой в безводной среде (уксусной кислоте) при этом результаты совпадали с данными, полученными при определении конечной точки потенциометрическими и визуальными методами . Определение титра смеси хлорной и-уксусной кислот, используемой при неводном титровании, легко проводилось при применении в качестве стандарта кислого фта-лата кал ИЯ [c.125]


Смотреть страницы где упоминается термин Потенциометрическое титрование определение конечной точки: [c.351]    [c.204]    [c.206]    [c.239]    [c.240]    [c.38]   
Основы аналитической химии Часть 2 (1979) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Потенциометрическое определение определение

Потенциометрическое титрование

Титрование конечная точка

Титрование точка

потенциометрическое



© 2025 chem21.info Реклама на сайте