Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Основные факторы, определяющие интенсивность коррозии

    При протекании термодинамически вероятной реакции электрохимической коррозии установление стационарной скорости коррозионного процесса в общем случае будет определяться такими тремя видами торможения торможением активационного характера (например, перенапряжение электродного процесса), торможением диффузионного характера и торможением за счет омического сопротивления. Реально устанавливающаяся скорость электрохимической коррозии, таким образом, зависит как от степени термодинамической нестабильности металла в данных условиях, так и от ряда кинетических факторов, определяющих интенсивность торможения коррозионного процесса. Это следует из основного аналитического уравнения для скорости электрохимической коррозии  [c.9]


    Коррозия низкотемпературных поверхностей нагрева изучена достаточно подробно. Коррозия воздухоподогревателей зависит от большого числа факторов, из которых наиболее важными являются качество топлива, способ сжигания и температурный режим поверхности нагрева. Коррозия при сжигании твердых топлив обычно происходит с меньшей интенсивностью, чем при сжигании сернистого мазута. Зола твердых топлив способна химически связывать окислы серы и уменьшить скорость коррозии. Однако высокореакционное жидкое топливо представляется возможным сжигать с малыми избытками воздуха, что не достигается при сжигании твердого топлива. Температурный режим поверхности нагрева определяет интенсивность конденсации серной кислоты и агрессивность сернокислотного конденсата, В четвертой главе книги рассмотрены основные особенности коррозии воздухоподогревателей, показаны преимущества РВП перед ТВП. В этой главе использованы материалы исследований процесса сернокислотной коррозии в зависимости от основных режимных факторов работы паровых котлов — нагрузки, избытка воздуха, уровня предварительного подогрева воздуха, способа очистки и др. Приведенная методика определения времени износа металлической набивки РВП в зависимости от температуры стенки при различной интенсивности коррозии может быть использована для уточнения сроков замены вышедших из строя поверхностей нагрева РВП. [c.9]

    Однако для практических целей большее значение имеет не общее разрушение металла, а интенсивность коррозии (скорость коррозии в данной точке) для этих целей нужно знать кое-что о тех факторах, которые определяют местную коррозию. Очевидно, выгодно, когда коррозия распределена равномерно и большое внимание необходимо уделить тому факту, что уменьшение запаса кислорода не только снижает общую коррозию, но одновременно является и основной причиной того, что она все же хорошо распространяется. [c.102]

    Коррозионная агрессивность атмосферы для основных групп металлов и способов подготовки поверхности определяется числом, временем и интенсивностью воздействия климатических факторов, которые стимулируют процесс атмосферной коррозии. Коррозионная агрессивность атмосферы охарактеризована в табл. 8 1 см. гл. 12). [c.23]


    О до 5°С. Если для металла продолжительностью пребывания фазовой влаги на поверхности является основным пардметром, характеризующим атмосферную коррозию, то для неметаллических капиллярно-пористых тел (бетона, асбестоцемента, кирпича и т. д.) коррозионные процессы протекают весьма медленно (в том случае, если в атмосфере отсутствуют сильноагрессивные газы). Снижение долговечности происходит интенсивнее, когда увлажненный материал испытывает многократные циклы замораживания и оттаивания. Степень агрессивного воздействия указанных физических факторов определяется количеством циклов перехода температуры через 0°С, а также суровостью климата (рис. 5). [c.18]

    Коррозионное растрескивание не является характерной особенностью сплавов на алюминиевой основе данному виду разрушения подвержены и другие металлические сплавы, например, латунь (сезонное растрескивание), сплавы на магниевой основе и другие. Склонность к коррозионному растрескиванию некоторых легких сплавов в деформированном состоянии препятствует их широкому применению в промышленности. В соответствии с этим вопросам коррозионного растрескивания сплавов в последнее время уделяется особое внимание [13—16]. Однако еш е ни для одного сплава не найдена такая трактовка механизма этого явления, которая дала бы удовлетворительное объяснение всех случаев коррозионного растрескивания. Растрескивание имеет место в средах, вызывающих значительное локальное коррозионное поражение без заметной общей коррозии. Интенсивность локализованного разрушения может быть очень большой процесс его развития протекает вдоль чрезвычайно узких каналов, вершины которых могут иметь радиус порядка одного межатомного расстояния. Поскольку локализация коррозионного поражения является важным фактором, то микроструктура сплава оказывает основное влияние на такого рода разрушения [1 8]. Как показывают экспериментальные данные, изменение состава, термическая обработка, способ изготовления и деформация оказывают влияние на микроструктуру и, следовательно, на склонность сплава к коррозионному растрескиванию. Структура сплава влияет не только на иервоначальную локализацию коррозионного разрушения, но определяет также направление и скорость растрескивания. [c.23]

    Почвенная коррозия представляет в общем случае результат совместной деятельности указанных макро- или микрокоррозионных процессов. Пока еще не делалось попыток разделить степень участия в общем материальном эффекте коррозии работы макро- и работы микроиар, хотя это, помимо научного интереса, имеет большое практическое значение и в принципе является вполне возможным. При основной роли в коррозионном процессе работы макропар, например макропар неравномерной аэрации, коррозионное поражение имеет более явно выраженный местный характер и будет сосредоточено на участках конструкции с меньшей аэрацией. Для почвенной коррозии, определяемой в основном работой микропар, характерен более равномерный вид коррозии, причем коррозия будет более значительной на участках с большей аэрацией. Для работы макропар существенное значение имеет удельное сопротивление почвы. Его влияние тем больше, чем больше размеры функционирующих макропар. Для микрокоррозионных процессов при почвенной коррозии омический фактор не имеет определяющего значения и интенсивность работы микропар в основном будет определяться поляризационными характеристиками. [c.379]

    Известно, что общая скорость процесса коррозии определяется скоростью той реакции, которая протекает с наименьшей интенсивностью. Эта стадия процесса называется контролирующим фактором, так как она контролирует скорость всего процесса. Если коррозия металла подземного сооружения определяется деятельностью микро-коррозионных элементов, то контролирующим фактором процесса является катодная или анодная реакция. Коррозионный процесс с катодным контролем (катодна51 реакция) характерен для большинства плотных и увлажненных грунтов, когда основную роль играет реакция присоединения свободного электрона (кислородная или водородная деполяризация) протекающая с минимальной скоростью. Это объясняется торможением поступления воздуха к поверхности корродирующего металла. Для сухих, рыхлых и хорошо аэрируемых грунтов характерен анодный контроль, когда затруднен отвод положительных ионов металла от анодного участка поверхности металлического [c.45]

    Для окислительных ингибиторов, тормозящих анодный процесс не непосредственно, но путем повышения эффективности катодного процесса (второй класс ингибиторов), интенсивность действия ингибитора на процесс пассивации металла будет определяться уже другими факторами. В первую очередь, основное значение здесь будут иметь величина окислительно-восстановительного потенциала, величина тока обмена и кинетика окисли-тельно-восстановительных (катодно-деноляризующих) процессов. Первое необходимое условие снижения скорости коррозии металла при введении в раствор этих ингибиторов, естественно,— достаточно положительное значение его окислительно-восста- [c.189]


    В практических условиях почвенной коррозии значительное i ускорение проникновения кислорода может происходить первым путем, т. е. путем аэро- или гидродинамической подачи кислорода, вследствие направленного течения (постоянного или, чаще, периодического) воздуха или почвенной влаги в глубь почвы. Такой механизм будет определяться, например, наличием периодических колебаний температур в верхних слоях почвы, изменением барометрического давления, а также изменением во времени степени влажности почвы, фильтрацией осадков в почву и колебанием ур10вня грунтовых вод. Эти факторы могут вызывать просасывание воздуха или насыщенной воздухом почвенной влаги и обеспечивать значительное ускорение переноса кислорода по оравнеиию с чисто диффузион-ньш механизмом, который преимущественно устанавливается > в изотермических и изобарических условиях. Возможность установления, наряду с диффузионной, также и динамической подачи кислорода в условиях почвенной коррозии в природных " Условиях, может, по-видимому, заметно увеличить общую кислородную проницаемость, особенно для зернистых, рыхлых почв при относительно невысокой их увлажненности. Количе- ственных данных об интенсивности аэро-гидродинамической подачи кислорода в почву для различных условий еще нет. Можно полагать, что в плотных, сильно увлажненных почвах подобный динамический механизм подачи кислорода будет уже весьма мало эффективным, поэтому основным механиз-" мом подачи кислорода остается его диффузия из атмосферы в толщу почвы, что, естественно, будет. соответствовать весьма малым скоростям подачи, особенно при значительной влажности и тонкой дисперсной структуре почвы. [c.116]


Смотреть главы в:

Коррозия газового тракта котельных установок -> Основные факторы, определяющие интенсивность коррозии




ПОИСК





Смотрите так же термины и статьи:

Фактор интенсивности



© 2025 chem21.info Реклама на сайте