Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Анодный контроль

Рис. 209. Изменение коэффициента пассивности П и степени анодного контроля Сд в зависимости от электродного потенциала при коррозии железа в нейтральных аэрированных растворах Рис. 209. <a href="/info/22940">Изменение коэффициента</a> пассивности П и <a href="/info/1639016">степени анодного</a> контроля Сд в зависимости от <a href="/info/2864">электродного потенциала</a> при <a href="/info/16254">коррозии железа</a> в нейтральных аэрированных растворах

    Если скорость коррозии контролируется катодным процессом и коррозионный потенциал близок к потенциалу разомкнутой цепи анодных участков, то необходимая плотность тока только слегка превышает плотность соответствующего коррозионного тока. Но при смешанном контроле требуемый ток может быть значительно больше коррозионного, и он может еще более увеличиваться в случае протекания коррозионных процессов с анодным контролем. [c.222]

    Так как электрохимическая коррозия протекает через несколько взаимосвязанных стадий, то скорость ее зависит от скорости самой медленной стадии, называемой лимитирующей (контролирующей) стадией процесса. Все остальные стадии вынуждены иметь скорость, равную скорости лимитирующей стадии процесса. Поскольку коррозионные элементы являются короткозамкнутыми микроэлементами, то движение электронов в металле не может быть лимитирующей стадией процесса. Движение ионов в растворе обычно также не лимитирует процесс коррозии ввиду очень малого расстояния между микроэлектродами (исключение составляют растворы с очень малой электропроводностью). Следовательно, лимитирующими стадиями могут быть или реакции анодного окисления металла (анодный контроль), или реакции катодного восстановления окислителя (катодный контроль), или те и другие одновременно (смешанный контроль). [c.214]

    Установить степень катодного и анодного контроля процесса саморастворения железа в 3%-ном растворе поваренной соли при 298,2 К, если потенциал железа в этом растворе, по измерениям Г, В. Акимова и [c.112]

    Согласно классификации, предложенной Н. Д. Томашовым, при применении лакокрасочных покрытий с пассивирующим пигментом коррозионный процесс тормозится за счет увеличения степени анодного контроля. Некоторые изолирующие покрытия могут тормозить коррозию вследствие увеличения омического сопротивления (см. рис. 1.4, в). [c.17]

    Катодная и анодная реакции могут иметь неодинаковые константы скоростей. При этом скорость суммарного процесса лимитируется одной полуреакцией. Если более медленной является анодная реакция, то реакция идет с анодным контролем. Если лимитирующим служит катодный процесс, то реализуется катодный контроль. [c.102]

    Наибольший катодный и анодный контроль в области стационарного потенциала, как показало снятие гальваностатических поляризационных кривых, наблюдается в случае ингибитора КПИ-1. Вместе с тем катодные ветви для катапина-А и КПИ-1 при плотности тока 2 мА/см пересекаются, и катодный контроль со стороны катапина-А при более высоких плотностях тока превосходит торможение катодной реакции ингибитором КПИ-1. Можно предполагать, что это связано с увеличением перенапряжения водорода в присутствии катапина-А благодаря его лучшей адсорбируемости при катодной поляризации. [c.160]


    Процесс характеризуется большой анодной поляризацией и малой катодной, т. е. протекает с анодным контролем . Поэтому стремятся иметь никелевый порошок без пассивирующих пленок. [c.81]

    Соответственно степень анодного контроля [c.305]

    Степень анодного контроля [c.463]

    Потенциал незащищенной стали в сероводородсодержащей среде (На 8 - 1200 мг/л) составляет -650 мВ. При нанесении алюминиевого, кадмиевого, никелевого покрытия происходит облагораживание потенциала во времени вследствие образования поверхностных пленок, формирующихся в присутствии сероводорода, при зтом потенциал поверхности покрытия составляет, мВ алюминиевого —570, никелевого +280, кадмиевого —410 и цинкового —750. Ход поляризационных кривых для стали с покрытиями свидетельствует о значительном торможении катодного и анодного процессов с преимущественным анодным контролем. [c.86]

Рис. 1.4.2. Поляризационные коррозионные диаграммы для основных практических случаев контроля атмосферной коррозии металлов о) смешанный катодно-анодный отческий контроль б) преимущественно катодный контроль в) преимущественно анодный контроль г) преимущественно омический контроль Рис. 1.4.2. Поляризационные <a href="/info/317337">коррозионные диаграммы</a> для <a href="/info/1485568">основных практических</a> случаев контроля <a href="/info/10624">атмосферной коррозии металлов</a> о) <a href="/info/69587">смешанный катодно</a>-анодный отческий контроль б) преимущественно <a href="/info/69584">катодный контроль</a> в) преимущественно анодный контроль г) преимущественно омический контроль
Рис. 1.11. Диаграммы Эванса а — нахождение по соотношению поляризуемостей анодной и катодной реакций потенциала кор н тока /кор коррозии бив — соответственно катодный и анодный контроль, при котором повышенная катодная поляризуемость определяет степень коррозии г — контроль сопротивления растекания, при котором падение напряжения ограничивает /кор Рис. 1.11. <a href="/info/402810">Диаграммы Эванса</a> а — нахождение по соотношению <a href="/info/489552">поляризуемостей анодной</a> и <a href="/info/70609">катодной реакций</a> потенциала кор н тока /кор коррозии бив — соответственно катодный и анодный контроль, при котором повышенная катодная поляризуемость <a href="/info/1715037">определяет степень</a> коррозии г — контроль <a href="/info/69711">сопротивления растекания</a>, при котором <a href="/info/28087">падение напряжения</a> ограничивает /кор
    Изменение потенциала цинка в горячей водопроводной воде до —0,3 В и —0,25 В, свидетельствующее о протекании на отдельных участках металлической поверхности коррозионного процесса под анодным контролем, вызвано наличием определенных условий, например присутствием в воде кислорода или бикарбонатов. Введением силикатов или гидроокиси кальция можно предотвратить изменение потенциала цинка. [c.112]

    Степень анодного контроля Са прн коррозии металлов в аэрированном 0,5-н. растворе Na l при 25° С (по Н. П. Жуку) [c.304]

    Строится коррозионная диафамма по анодным и катодным поляризационным кривым. По наклону кривых можно определить, какая именно электродная реакция определяет общую скорость коррозии, рассчитать относительную долю начальной разности потенциалов, которая теряется на данном виде сопротивления. Эта величина называется мерой контроля коррозионного процесса данной электродной реакции или контролирующим фактором. Мерой катодного и анодного контроля служат величины тангенсов углов наклона поляризационных кривых. Если общая скорость коррозии (величина коррозионного тока) определяется скоростью катодной реакции, то такой контроль называют катодны.м при анодном контроле общая скорость коррозии определяется скоростью анодной реакции. Если же в скорость коррозии вносят вклад и анодная, и катодная реакции, то такой контроль называют смешанным. [c.29]

    Г, Смешанный катодно-анодный контроль АЕ АЕ ). Диаграмма характерна для коррозии железа, сталей, алюминия и других металлов в пассивном состоянии. [c.99]

    В кислой среде (pH < 4) диффузия кислорода перестает быть лимитирующим фактором и коррозионный процесс частично определяется скоростью выделения водорода, которая, в свою очередь, зависит от водородного перенапряжения на различных примесях и включениях, присутствующих в специальных сталях и чугунах. Скорость коррозии в этом диапазоне pH становится достаточно высокой, и анодная поляризация способствует этому (анодный контроль). Низкоуглеродистые стали корродируют в кислотах G меньшей скоростью, чем высокоуглеродистые, так как для цементита Feg характерно низкое водородное перенапряжение. Поэтому термическая обработка, влияющая на количество и размер частиц цементита, может значительно изменить скорость коррозии. Более того, холоднокатаная сталь корродирует в кислотах интенсивнее, чем отожженная или сталь со снятыми напряжениями, так как в результате механической обработки образуются участки мелкодисперсной структуры с низким водородным перенапряжением, содержащие углерод и азот. Обычно железо не используют в сильнокислой среде, поэтому для практических нужд важнее знать закономерности его коррозии в почвах и природных водах, чем в кислотах. Тем не менее существуют области [c.107]


    В присутствии избытка МНд, например в растворах минеральных удобрений, скорость коррозии в МН4ЫОз при комнатной температуре может достигать очень высоких значений — до 50 мм/год [21—24] (рис. 6.13). Комплексное соединение, образующееся в этом случае, имеет формулу [Ре(МНз)в ](ЫОз)2 [24]. Реакция, очевидно, идет с анодным контролем так как контакт низколегированной стали с платиной (при равной площади образцов) не влияет на скорость коррозии. Структура металла влияет на коррозионную стойкость. Так, нагартованная малоуглеродистая сталь корродирует с большей скоростью, чем закаленная при повышенной температуре. Это свидетельствует, что коррозия протекает не с диффузионным контролем, а зависит от скорости образования ионов металла на аноде и, возможно, до некоторой степени от скорости деполяризации на катоде. [c.119]

    В реагенте РВ-ЗП-1 проявляется специфическое влияние А1С1з на кинетику коррозии процесс протекает с выраженным анодным контролем, а стадийность реакции катодного выделения водорода не оказывает существенного воздействия на скорость коррозии стали и ее механические свойства. Так, снижение относительного удлинения стандартных образцов стали при испытаниях на разрыв в реагенте РВ-ЗП-1 не превышает 0,5%. [c.288]

    Коррозионный процесс с катодным контролем характерен для большинства плотных и увлажненных почв, когда определяющей является реакция присоединения электрона (водородная или кислородная деполяризация), протекающая с меньшей скоростью. Для сухих, рыхлых и хорошо аэрируемых почв характерен анодный контроль, когда затруднен отвод положительных ионов металла от анодного участка поверхности металлического сооружения. В условиях работы макроэлементов дифференциальной аэрации преобладает смещанный катодно-омический или омическнн контроль. В последнем случае процесс коррозии затормаживается в основном 46 [c.46]

    Известно, что общая скорость процесса коррозии определяется скоростью той реакции, которая протекает с наименьшей интенсивностью. Эта стадия процесса называется контролирующим фактором, так как она контролирует скорость всего процесса. Если коррозия металла подземного сооружения определяется деятельностью микро-коррозионных элементов, то контролирующим фактором процесса является катодная или анодная реакция. Коррозионный процесс с катодным контролем (катодна51 реакция) характерен для большинства плотных и увлажненных грунтов, когда основную роль играет реакция присоединения свободного электрона (кислородная или водородная деполяризация) протекающая с минимальной скоростью. Это объясняется торможением поступления воздуха к поверхности корродирующего металла. Для сухих, рыхлых и хорошо аэрируемых грунтов характерен анодный контроль, когда затруднен отвод положительных ионов металла от анодного участка поверхности металлического [c.45]

    Анодная кривая А а4-Р имеет характерную петлю перехода в пассивное состояние. Отношение АЕм Еа <, что свидетельствует о превалируюш ем анодном контроле и характеризует заметную пассивность. Скорость коррозии при этом мала, однако в присутствии активных ионов значительно повышается. [c.8]

    Ввиду того, что сама ячейка и токоизмерительный прибор обладают известным омическим сопротивлением, в данном установке условие г. олной заполяризованности реализовано быть не может. Определив катодную и анодную поляризацию для полностью заполяризованного коррозионного элемента, рассчитывают степень катодного и анодного контроля. [c.255]

    Анодный контроль наиболее значителен у алюминиевых и никелевых покрытий, которые имеют обширную область анодной пассивности от 50 до 180 мВ для алюминиевого при плотности тока полной пассивации = 20 мкА/см и от О +900 мВ для никелевого при плотности тока полной пассивации /дц = 10 мкА/см . Смещение потенциала стали при наличии на поверхности № - Р покрытия выше потенциала вьщеления водорода, что исключает восстановление ионов Н и способствует высокой стойкости покрытий в наводороживающих средах. Для кадмиевого покр(.1Тия область пассивности отсутствует, однако анодный процесс растворения затруднен, токи растворения даже при потенциале 100 мВ незначительны. Катодная поляризация наиболее значительна у алюминиевого и цинкового покрытия и уменьшается к кадмиевому и никелевому. Высокий защитный эффект покрытий в сероводородсодержащих средах подтверждается данными по поляризационному сопротивлению как без растягивающих нагрузок (а = 0), так и при них (о = 1,1 Оо - ) (табл. 21). [c.86]

    Такие металлы, как железо и 1щнк, процесс коррозии которых в Нейтральных средах протекает с катодным контролем, корродируют в щелях с меньшей скоростью, чем вне их. Магниевые сплавы и некоторые нержавеющие стали, корродирующие с анодным контролем, разрушаются в щелях интенсивнее, чем на открытой поверхности. Следовательно, для у1Леродистых сталей при коррозии под напряжением в нейтральных и слабокислых средах собственно щелевой эффект рост трещин ускоряет несущественно. [c.59]

    В зависимости от того, какой электродной реакцией контролируется коррозионный процесс, коррозионные (рис. 1.4) диаграммы бывают трех видов. При катодном контроле (а) скорость коррозии контролируется преимущественно катодной реакцией при анодном контроле (б) сила тока, а следова- [c.16]

    Для пассивирующихся сплавов, легко приводимых к анодному контролю, более эффективно введение добавок, которые замедляют протекание непосредственно анодных процессов (пассивирующие добавки) или облегчают ход катодных процессов (понижают перенапряжение катодной реакции)  [c.68]

    Таким образом, атмосферная коррозия металлов и сплавов, в частности на основе железа, протекает со смешанным катодно-анодным омическим контролем. Такой контроль в зависимости от толщины, состава и электропроводности электролита и природы корродирующего металла может переходить преимущественно в катодный контроль — мокрая атмосферная коррозия, или преимущественно в анодный контроль — влажная коррозия легко пассивирующихся металлов при отсутствии депассиваторов, или преимущественно в омический контроль (рис. 1.4.2). [c.57]


Смотреть страницы где упоминается термин Анодный контроль: [c.303]    [c.377]    [c.377]    [c.385]    [c.386]    [c.8]    [c.62]    [c.62]    [c.362]    [c.393]    [c.291]    [c.254]    [c.270]    [c.5]    [c.45]    [c.204]    [c.25]    [c.18]    [c.16]    [c.27]    [c.155]   
Ингибиторы коррозии (1977) -- [ c.85 , c.88 ]

Коррозия пассивность и защита металлов (1941) -- [ c.284 , c.350 ]




ПОИСК





Смотрите так же термины и статьи:

Ток анодный



© 2025 chem21.info Реклама на сайте